Define a group G as
G:{gg: (91392793394)79;1 S {071}} (1)
with the group operation being the componentwise addition modulo 2, that is
99 =99 = (9} + 9, 9 + 63, 6 + 63, 9 + 97) (mod 2) (2)
For each g € G, define a transformation d(g) on the quark field and the antiquark field as

d(g)(W(z)) = €T Myph(x)
(8

d(g)((x)) = € Tp(x)M, 3)
and its negative counterpart —d(g) as
—d(g)(¥(z)) = —e"T Mgip(x)
~d(g)((z)) = e () M] (4)
whereby 7, are the 16 corners of the Brillouin zone
Ty =g (5)

and M, are the matrices defined as

M, = H M,, (6)

pigp=1
with
M, =iy, (7)
The naive action for free fermions on the lattice given by
_ 1 . . -
So(@) =a' Y _{> @)y (@ +ap) = ¥e —ap)] + mi(a)y ()} (8)
T o

is invariant under this set of 32 discrete transformations. We note that these transformations compose with one another
according to the following

d(g)) o d(g) (@) = ™) My Mys(@) = iye™ Tate My gih(x)
d(g") o d(g?)(W(x)) = TG (@) MM, = e ot ()M, 9)

where ¢;; € {1} are such that
Mgngj = C»L‘ngigj (10)

We see that the 32 transformations given in (3) and (4) form a group, the “doubling symmetry” group D, with its structure
inherited from the group G such that

D = {£d(g) : d(g")d(¢’) = <i;d(g'¢’), 9 € G} (11)

In other words, we have
q¢:D— D/{+Ip} =G (12)

We are interested in finding irreducible representations of the doubling symmetry group D. To proceed, we would first like
to look at the irreps of group G, which can then be lifted up to irreps of D by composing with the quotient map ¢ from
(12). To determine the irreps of G, we make use of its following properties

(1) G is an abelian group of order 16

(2) all group elements of G, except the identity, have order 2

(3) G is generated by its 4 elements g' = (1,0,0,0), g% = (0,1,0,0), ¢* = (0,0, 1,0), g* = (0,0,0, 1)
By property (1), G has 16 inequivalent 1-dimensional irreps. By property (2) such an irrep can only go to itself or be
multiplied by a minus sign under any group element of G. By property (3) each irrep of G is uniquely determined by how
it transforms under g', g%, g3, g*. Therefore we label the 16 irreps of G, p;(£), by a 4-component vector

€ = (51)52753754% 6/14 € {il} (13)
such that the corresponding vector space (v(§)) transforms under G according to
pe(€)(g") s v(€) = &uu(€),  pe{l,2,3,4} (14)



Lifting up, we get 16 1-dimensional irreps of D, ph (&) on the vector space (v(€)), such that

pp(©)(Ed(g)) 1 v(©) = v(©) ] & (15)

nigp=1

Define a matrix group M as
M ={+M,: g€ G} (16)

with the group operation being the usual matrix multiplication, we have
D=M (17)

The doubling symmetry group D breaks into 17 conjugacy classes

{£d(9)}gec 10y U{—Tn} {Ip} (18)

and as for a finite group number of irreps equals number of conjugacy classes, we deduce that there is a last 4-dimensional
irrep of D, denoted by p?, such that
pp(Ed(g)) = £M, (19)

and obtain the full character table of the doubling symmetry group D as follows

—A{£d(9)}gecriiey — {-Ip} {Ip}

T

plD(g) Hu;guz1 f,u 1 1
1
oh +—0— —4 4

where the first row lists the 17 conjugacy classes of D, and the first column lists its 17 irreps.

We return to the representation of D on the quark field. This representation has no overlap with any of the irreps
ph(€), because the identification of —Ip to Ip in the 1-dimensional irreps is unphysical. Therefore the representation of
D on the quark field reduces to copies of irrep p}, , and by the same reasoning so does the representation of D on the
antiquark field.

To analyse the diquark representation and the antiquark-quark representation, it suffices to look at p?, ® p%,. Recalling
that the character of a tensor product representation is the product of the characters of its factors, we compute the character
of p1p ® ppy as

—{£d(9)}gecryiey =& {—Ip} {Ip}

PD ® Ph +~0— 16 16

Employing the projection formula for the multiplicity of irrep p}(€) in the representation p, ® p?,

m ol (5) = <Xp1D(§)7Xp‘l*)®p‘l*)> (20)

whereby the inner product ( , ) on the characters of any two representations, o and §, for a general finite group {2 is defined
as

(o X6} = 1y Zxa (21)

weN

we decompose the tensor product representation into

ph ® ph = Depp(€) (22)

i.e. the diquark representation and the antiquark-quark representation are both described by the 16 1-dimensional irreps
of the doubling symmetry group.



We look at meson operators of the form

Y@ Y(z +afn + - +afiy),  0<r<4 (23)
whereby fi1, -, i, are distinct links, i.e. space-time vectors of unit length along directions given by the indices 1, - -, i,
respectively. Making use of the identity
M;7u1 ”.’Y'LLkM = (_1)gu1+"'+guk7u1 T Yugs iy e € {1’25374} (24)
we establish, for each choice of links, a one-to-one correspondence between the gamma matrices I')7; .., and the irreps
ph(€) of the antiquark-quark representation
0@ =% %, [[ w & pbp© (25)

#:Eu:_l

Explcitly, we have the above relation as

+d(g) : (@) (U@ + afn + - +afy) = (=1)9 T (@) MIT L, (Mgt (a + ajin + - + ajir)

gt B pr
= @I, ©Ov@ +ain +-+ai) T & (26)
pigu=1
which is just the definition for irrep ph(£) given in (15).
For diquark operators of the form
T (@)D (2 + afin + -+ ajiy),  0<r <4 (27)
we make use of the identity modified from (24)

M‘;T,Yul VukMg = (_1)92"1‘94(_1)gu1+”'+9,¢k,yu1 0 Yugs Biye s Uk € {1727374} (28)
and obtain a similar one-to-one correspondence, for each choice of links, between the gamma matrices FZ 1o, and the
irreps pL,(€) of the diquark representation

FZI"'IH (5) = 72Y4Yu1 ** Yu, H Yu ad plD (f) (29)
pe€p=—1

or explicitly
+d(g) : ¢ ()T}, (U@ +afy + -+ afiy) = (=L)2 ey T @) MIT), L, () Myd(z + afi + - + ajir)

B

= T@)0, ., OV +ain +--+a) [] & (30)

pigp=1

Another symmetry of the free fermion action (8) is the translational symmetry generated by single lattice spacing shifts
t(¥) in the spatial directions given by v € {1, 2,3}

L) ((x)) = ¢(z+ad)

t)(W(z)) = P+ av) (31)

and to be consistent with the periodic boundary conditions we must have ¢(2)" go to identity for v € {1,2,3}. Therefore
these shifts form a translational symmetry group 7'

T={t(n):t(n) = Ht(f/)””,nu €Zn} (32)

which is an abelian group with its group operation defined as
t(nt(n?) = t(n?)t(n') = t(n* +n?), (n* +n?), =n’, +n (mod N) (33)
and isomorphic to the direct product of cyclic group Zy
T = (Zy)? (34)

T has N? 1-dimensional irreps p¥.(p), labelled by a 3-component vector p, the momentum

0, N1} (35)

p = (p1,p2,03), DvE =



such that the corresponding vector space (w(p)) transforms under T according to

pr(p) (D)) : w(p) = P w(p) (36)
Define a larger lattice symmetry group S which incorporates both the doubling symmetry and the translational symmetry

S = (d(g"), t e T (37)

we note its group elements {+d(g)}4ecc either commute or anticommute with {¢(n)},, ez, according to
t(n)d(g)t(n) " = (=1)> " d(g) (38)

and therefore deduce the following properties of S

(1) Z(8) = {£t(n) }n, e2zrve U{Ed(g")t(n) b, g2z
(2) S/{xls} =G xT
3)S=DxT
By property (1) we know S breaks into (16 + i)N 3 conjugacy classes

{£d(9)t(n) }a(gyemezcs) | {—d(@)tn) Yaggrmyezs) JLd@)tn) Yagyemezs) (39)

By property (2) we get 16 N3 1-dimensional irreps of S lifted up from the 1-dimensional irreps of the abelian group G x T'
in a similar fashion as in our treatment of group D. Explicitly, the 16 N? irreps of G' x T are just the tensor products of
irreps of G and irreps of T, labelled by a pair of vectors (&, p)

Pxr(6:0) = p6(©) @ pb(D) & poxr(&p)(g,t(n) (@ @ w(p) » v @w(p) [[ uet=mrr (40)

pigp=1

and the corresponding 1-dimensional irreps of S, p§(&,p), have characters

{£d(9)t(n)}acgyemygzcsy  {—A(@EN) Yagymiezs)y 1d(9)t(n)}acgyemyez(s)

p.IS'(é-?p) H,u:g,l,zl gueizun,,pu Hll,:g“:1 gﬂei ZV by Hp:guzl gﬂeizy b

To find the remaining iN 3 irreps of S, we make use of relation (38), which gives a homomorphism @ from 7" to the group
of automorphisms of D
0(t(n)) : £d(g) — £t(n)d(g)t(n) ™" (41)

Since D has a single 4-dimensional irrep, p},, given t(n) we have p}, o 6(t(n)) as a 4-dimensional irrep of D equivalent to
ph, and some 4 x 4 transformation matrix P(¢(n)) such that

P(t(n)pp(Fd(9))P(t(n) ™" = pp 0 0(t(n))(£d(g)) &  P(t(n))M,P(t(n))™" = (=1)" M, (42)

whereby ny is taken to be identically 0. By Schur’s lemma, the transformation matrices P(t(n)) form a projective repre-
sentation of T, and in particular the choice g% defined as

or(t(®) =
or(tm) = [[w= TI w (43)
v vin, 27N
has its factor set fr taking values in {£1}
or(t(n")er(t(n?)) = fr(t(n'), tn?))erp(t(n)t(n’)),  fr(tn'),t(n’)) € {£1} V(n',n?) (44)
By property (3) S has the structure
S = {£d(g)t(n) : d(g")t(n")d(g")t(n?) = d(g")0(t(n"))(d(g”))t(n")t(n’)} (45)
therefore by (42) the map 0% defined as
0s(£d(g)t(n)) = pp(£d(g))er (t(n)) (46)



is a projective representation of S, with its factor set fs inherited from that of o}

fs(£d(gt(n"), £d(¢")t(n')) = fr(t(n'), t(n)) (47)
Since the 4-dimensional projective representation of 7', ., given by (43) maps the generators of the abelian group,

{t(?)}veq1,2,3), to anticommuting matrices, we are inspired to find a 2-dimensional projective representation of T 0%,
defined as

or(t(®) =

Am) = [[om= I o (48)

vin, €27 N
such that it has the same factor set as that of g%«, fr. By property (3) we also have
qg:S—=8S/D=T (49)

therefore we can lift o2 up to the corresponding 2-dimensional projective representation of S, Q%, with the same factor set
as that of o, fs. Similarly we can lift p}.(p) up to pk(p) as a 1-dimensional true representation of S. Finally, we define
an 8-dimensional projective representation of S, p%(p), as the tensor product

P5(p) = ps(p) ® 0% ® 05 (50)
and see that it has the trivial factor set f§
F3(Ed(gt(n"), £d(¢")t (7)) = fs(£d(g')t(n"), £d(¢")t(n?))* = 1 (51)
and is thus in fact a true representation of S. Explicitly, we have the group elements of S represented as the 8 x 8 matrices
pE(p)(£d(g)t(n)) = e’ 2vmr [ oM, [] w (52)
vin, €27 N vin, 27N

and taking the product of traces of the matrices p%(+d(g)t(n)) and o0& (£d(g)t(n)), we obtain the character of p%(p) as

{£d(9)t(n)}acgyemygzis) 1—d(@)t(n)agyimezes) {9t Fag)tnyez(s)

) 0 8! Xy e 8¢t S mube
p%(p) is irreducible as its character obeys the relation
<Xp§(p)’ Xp?g(p)> =1 (53)

l*jg)r each p in the range given by p, € 2W”{O, e % — 1}, define a new 8-dimensional irrep of S from p%(p), denoted by
Ps(p), as N ) .

Ps(p) = ps(T) @ ps(p) (54)
whereby 7 denotes the 3-component vector (r, 7, 7). These iN 3 irreps

27 N

OB e {05 - 1) (53)

give distinct characters and are thus pairwise inequivalent. We therefore exhaust the remaining irreps of S, and obtain the
full character table of group S as follows

{£d(9)t(n)}acgyemygzcsy  {—A(@EN) Yagyimiezs)y 1d(9)t(n)}acgyemyez(s)
T , . ,
p.IS'(é-?p) H,u:g,l,zl guelzun,,pu Hll,:g“:1 gﬂel ZV by Hp:guzl gﬂelzy b
i
T , : 4 :
pg(z\)) O _867’Zu NyPv 867'EV NyPy
1
T , . , .
(D) 0 —8(—1)2w Mty by B(—1) 2 Mgl 2y Py
1




with p in the range given by p, € 2T 10, — 1} and p in the range given by p, € {0 5 — 1}. For each p, both
p%(p) and p&(p) give an 8- dlmensmnal representatlon of T as a subgroup of S, denoted by 530 )|T and p%(D)|r respectively.
Modifying (52) we have

ps@D)r(tn) = = I o [ w

ving, 27N ving, €27 N
EDIrtn) = (—)zvmwezemr T e [ w (56)
vin, €27 N ving, €27 N

and employing the projection formulas for the multiplicities of irreps of T in p%(p)|r and g% (D)|r

ps () 8 S
m ls(p)T <XPIT(p)7ngs(1b)IT> = WH Z einv(Pv—pv)
v n,€2ZN
s _ 8 S
m 1S(ID) - <Xp‘T(p)7Xﬁ§S(p)|T> = WH Z et (bv—py)
v n,€2Ly
(57)
we deduce
P%(ﬁ)h" = ﬁ% (p)|T = @pp:i)—"—ﬂp%—'(p) (58)
whereby 7 denotes a 3-component vector such that 7, € {0,7}. In other words, given p with p, € 2T {0, --- N — 1},

the two 8-dimensional irreps of S associated with p, pz(‘) and ps( ), both couple to the eight 1- dlmensmnal 1rreps of T,
{p% (D+7)}#,ef0,x}, but are nonetheless inequivalent representations of the whole group S taking into account the doubling
symmetry.

On the quark field, the identification of —Is to Is in the 1-dimensional irreps of S, p%(&,p), is unphysical, thereby we
conclude that the representation of S on the quark field decomposes into copies of p%(p) and p%(p) for different p in the
range given by p, € 2 S (USEE — 1}. By the same reasoning the representation of S on the antiquark field decomposes
into copies of the 8- dlmensmnal irreps of S alike.

To analyse the diquark representation and the antiquark-quark representation, it suffices to look at the four cases,
P& () @ p&(7), pS (") @ S (), pL(D") @ pi(p7), and pE(p") @ p&(p7), for a particular choice of p* and p?. Taking the
products of characters of the factors we compute the characters of these four representations as follows

{£d(9)t(n) }Yagyemygzes)y  {—d(9)t(n) }agyemiezs) {d(9)t(n) }agyemyezs)
) © () = 350) © A2Y) 0 et Z 047D Bt S 0L 47D
P& (") @ p& () = p& (") @ P& (p7) 0 64(—1)2w et 20 e (PuFPL) 64 —1)20 el 2 e (DUt
Denoting
8 (31 8 2T\ ~v ~8 (i ~8 (8] _ N
Ps(@") @ ps(@’) = ps(@') ® ps(@’) = (D7)
ps() @ p5() = p5() @ () = (D) (59)

we have the overlaps between ¢(p?, p?), ¢/(p%,p?) and the 1-dimensional irreps of S, pk(&,p), to be

(ppj) = i j 4 u+u_V v 1/+1/_l/
Mot = Xob(emr Xc@ipi) = N3(1+£4elz e [ 30 ein@iapior
v n,E2ZLN
Chy) 4 ST okl m 3L+,
Moen = Xoh(em) Xeip)) = ]\,3(1—546Z w1 S (0L +P%—pv) (60)
v n,E2ZN

therefore ((p*,p?) and ¢’ (p*,p?) each reduce to 64 1-dimensional irreps of S associated with p + p’ according to

C(plap]) = @p:p:f)i+ﬁj+7’r(®§;g4:ei2y*up}?(gvp))
COND) = Cppmpirpirr (e eis, 7056 D)) (61)

while the two sets of irreps from {p§(&, p)}p—pi+pi++ do not overlap with each other.



