
Define a group G as
G = {g : g = (g1, g2, g3, g4), gµ ∈ {0, 1}} (1)

with the group operation being the componentwise addition modulo 2, that is

gigj = gjgi = (gi1 + gj1, g
i
2 + gj2, g

i
3 + gj3, g

i
4 + gj4) (mod 2) (2)

For each g ∈ G, define a transformation d(g) on the quark field and the antiquark field as

d(g)(ψ(x)) = eix.πgMgψ(x)

d(g)(ψ̄(x)) = eix.πg ψ̄(x)M†g (3)

and its negative counterpart −d(g) as

−d(g)(ψ(x)) = −eix.πgMgψ(x)

−d(g)(ψ̄(x)) = −eix.πg ψ̄(x)M†g (4)

whereby πg are the 16 corners of the Brillouin zone

πg =
π

a
g (5)

and Mg are the matrices defined as

Mg =
∏

µ:gµ=1

Mµ (6)

with
Mµ = iγ5γµ (7)

The naive action for free fermions on the lattice given by

S0(ψ) = a4
∑
x

{
∑
µ

ψ̄(x)γµ
1

2a
[ψ(x+ aµ̂)− ψ(x− aµ̂)] +mψ̄(x)ψ(x)} (8)

is invariant under this set of 32 discrete transformations. We note that these transformations compose with one another
according to the following

d(gi) ◦ d(gj)(ψ(x)) = eix.(πgi+πgj )MgiMgjψ(x) = ςije
ix.πgigjMgigjψ(x)

d(gi) ◦ d(gj)(ψ̄(x)) = eix.(πgi+πgj )ψ̄(x)M†gjM
†
gi = ςije

ix.πgigj ψ̄(x)M†gigj (9)

where ςij ∈ {±1} are such that
MgiMgj = ςijMgigj (10)

We see that the 32 transformations given in (3) and (4) form a group, the “doubling symmetry” group D, with its structure
inherited from the group G such that

D = {±d(g) : d(gi)d(gj) = ςijd(gigj), g ∈ G} (11)

In other words, we have
q : D → D/{±ID} ∼= G (12)

We are interested in finding irreducible representations of the doubling symmetry group D. To proceed, we would first like
to look at the irreps of group G, which can then be lifted up to irreps of D by composing with the quotient map q from
(12). To determine the irreps of G, we make use of its following properties

(1) G is an abelian group of order 16
(2) all group elements of G, except the identity, have order 2
(3) G is generated by its 4 elements g1 = (1, 0, 0, 0), g2 = (0, 1, 0, 0), g3 = (0, 0, 1, 0), g4 = (0, 0, 0, 1)

By property (1), G has 16 inequivalent 1-dimensional irreps. By property (2) such an irrep can only go to itself or be
multiplied by a minus sign under any group element of G. By property (3) each irrep of G is uniquely determined by how
it transforms under g1, g2, g3, g4. Therefore we label the 16 irreps of G, ρ1

G(ξ), by a 4-component vector

ξ = (ξ1, ξ2, ξ3, ξ4), ξµ ∈ {±1} (13)

such that the corresponding vector space 〈v(ξ)〉 transforms under G according to

ρ1
G(ξ)(gµ) : v(ξ) 7→ ξµv(ξ), µ ∈ {1, 2, 3, 4} (14)
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Lifting up, we get 16 1-dimensional irreps of D, ρ1
D(ξ) on the vector space 〈v(ξ)〉, such that

ρ1
D(ξ)(±d(g)) : v(ξ) 7→ v(ξ)

∏
µ:gµ=1

ξµ (15)

Define a matrix group M as
M = {±Mg : g ∈ G} (16)

with the group operation being the usual matrix multiplication, we have

D ∼= M (17)

The doubling symmetry group D breaks into 17 conjugacy classes

{±d(g)}g∈G\{IG}
⋃
{−ID}

⋃
{ID} (18)

and as for a finite group number of irreps equals number of conjugacy classes, we deduce that there is a last 4-dimensional
irrep of D, denoted by ρ4

D such that
ρ4
D(±d(g)) = ±Mg (19)

and obtain the full character table of the doubling symmetry group D as follows

← {±d(g)}g∈G\{IG} → {−ID} {ID}

↑
ρ1
D(ξ)

∏
µ:gµ=1 ξµ 1 1

↓

ρ4
D ← 0→ −4 4

where the first row lists the 17 conjugacy classes of D, and the first column lists its 17 irreps.
We return to the representation of D on the quark field. This representation has no overlap with any of the irreps

ρ1
D(ξ), because the identification of −ID to ID in the 1-dimensional irreps is unphysical. Therefore the representation of
D on the quark field reduces to copies of irrep ρ4

D , and by the same reasoning so does the representation of D on the
antiquark field.

To analyse the diquark representation and the antiquark-quark representation, it suffices to look at ρ4
D ⊗ ρ4

D. Recalling
that the character of a tensor product representation is the product of the characters of its factors, we compute the character
of ρ4

D ⊗ ρ4
D as

← {±d(g)}g∈G\{IG} → {−ID} {ID}

ρ4
D ⊗ ρ4

D ← 0→ 16 16

Employing the projection formula for the multiplicity of irrep ρ1
D(ξ) in the representation ρ4

D ⊗ ρ4
D

m
ρ4D⊗ρ

4
D

ρ1D(ξ)
= 〈χρ1D(ξ), χρ4D⊗ρ4D 〉 (20)

whereby the inner product 〈 , 〉 on the characters of any two representations, α and β, for a general finite group Ω is defined
as

〈χα, χβ〉 =
1

|Ω|
∑
ω∈Ω

χα(ω)χβ(ω) (21)

we decompose the tensor product representation into

ρ4
D ⊗ ρ4

D = ⊕ξρ1
D(ξ) (22)

i.e. the diquark representation and the antiquark-quark representation are both described by the 16 1-dimensional irreps
of the doubling symmetry group.
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We look at meson operators of the form

ψ̄(x)Γmψ(x+ aµ̂1 + · · ·+ aµ̂r), 0 ≤ r ≤ 4 (23)

whereby µ̂1, · · · , µ̂r are distinct links, i.e. space-time vectors of unit length along directions given by the indices µ1, · · · , µr
respectively. Making use of the identity

M†gγu1 · · · γukMg = (−1)gu1+···+gµk γu1 · · · γuk , µ1, · · · , µk ∈ {1, 2, 3, 4} (24)

we establish, for each choice of links, a one-to-one correspondence between the gamma matrices Γmµ1···µr and the irreps
ρ1
D(ξ) of the antiquark-quark representation

Γmµ1···µr (ξ) = γu1
· · · γur

∏
µ:ξµ=−1

γu ⇔ ρ1
D(ξ) (25)

Explcitly, we have the above relation as

±d(g) : ψ̄(x)Γmµ1···µr (ξ)ψ(x+ aµ̂1 + · · ·+ aµ̂r) 7→ (−1)gu1+···+gµr ψ̄(x)M†gΓmµ1···µr (ξ)Mgψ(x+ aµ̂1 + · · ·+ aµ̂r)

= ψ̄(x)Γmµ1···µr (ξ)ψ(x+ aµ̂1 + · · ·+ aµ̂r)
∏

µ:gµ=1

ξµ (26)

which is just the definition for irrep ρ1
D(ξ) given in (15).

For diquark operators of the form

ψT (x)Γbψ(x+ aµ̂1 + · · ·+ aµ̂r), 0 ≤ r ≤ 4 (27)

we make use of the identity modified from (24)

MT
g γu1

· · · γukMg = (−1)g2+g4(−1)gu1+···+gµk γu1
· · · γuk , µ1, · · · , µk ∈ {1, 2, 3, 4} (28)

and obtain a similar one-to-one correspondence, for each choice of links, between the gamma matrices Γbµ1···µr and the
irreps ρ1

D(ξ) of the diquark representation

Γbµ1···µr (ξ) = γ2γ4γu1
· · · γur

∏
µ:ξµ=−1

γu ⇔ ρ1
D(ξ) (29)

or explicitly

±d(g) : ψT (x)Γbµ1···µr (ξ)ψ(x+ aµ̂1 + · · ·+ aµ̂r) 7→ (−1)gu1+···+gµrψT (x)MT
g Γbµ1···µr (ξ)Mgψ(x+ aµ̂1 + · · ·+ aµ̂r)

= ψT (x)Γbµ1···µr (ξ)ψ(x+ aµ̂1 + · · ·+ aµ̂r)
∏

µ:gµ=1

ξµ (30)

Another symmetry of the free fermion action (8) is the translational symmetry generated by single lattice spacing shifts
t(ν̂) in the spatial directions given by ν ∈ {1, 2, 3}

t(ν̂)(ψ(x)) = ψ(x+ aν̂)

t(ν̂)(ψ̄(x)) = ψ̄(x+ aν̂) (31)

and to be consistent with the periodic boundary conditions we must have t(ν̂)N go to identity for ν ∈ {1, 2, 3}. Therefore
these shifts form a translational symmetry group T

T = {t(n) : t(n) =
∏
ν

t(ν̂)nν , nν ∈ ZN} (32)

which is an abelian group with its group operation defined as

t(ni)t(nj) = t(nj)t(ni) = t(ni + nj), (ni + nj)ν = niν + njν (modN) (33)

and isomorphic to the direct product of cyclic group ZN

T ∼= (ZN )3 (34)

T has N3 1-dimensional irreps ρ1
T (p), labelled by a 3-component vector p, the momentum

p = (p1, p2, p3), pν ∈
2π

N
{0, · · · , N − 1} (35)
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such that the corresponding vector space 〈w(p)〉 transforms under T according to

ρ1
T (p)(t(ν̂)) : w(p) 7→ eipνw(p) (36)

Define a larger lattice symmetry group S which incorporates both the doubling symmetry and the translational symmetry

S = 〈d(gµ), t(ν̂)〉µ∈{1,2,3,4}ν∈{1,2,3} (37)

we note its group elements {±d(g)}g∈G either commute or anticommute with {t(n)}nν∈ZN according to

t(n)d(g)t(n)−1 = (−1)
∑
ν nνgνd(g) (38)

and therefore deduce the following properties of S
(1) Z(S) = {±t(n)}nν∈2ZN∀ν

⋃
{±d(g4)t(n)}nν /∈2ZN∀ν

(2) S/{±IS} ∼= G× T
(3) S = D o T

By property (1) we know S breaks into (16 + 1
4 )N3 conjugacy classes

{±d(g)t(n)}d(g)t(n)/∈Z(S)

⋃
{−d(g)t(n)}d(g)t(n)∈Z(S)

⋃
{d(g)t(n)}d(g)t(n)∈Z(S) (39)

By property (2) we get 16N3 1-dimensional irreps of S lifted up from the 1-dimensional irreps of the abelian group G× T
in a similar fashion as in our treatment of group D. Explicitly, the 16N3 irreps of G × T are just the tensor products of
irreps of G and irreps of T , labelled by a pair of vectors (ξ, p)

ρ1
G×T (ξ, p) = ρ1

G(ξ)⊗ ρ1
T (p) ⇔ ρ1

G×T (ξ, p)(g, t(n)) : v(ξ)⊗ w(p) 7→ v(ξ)⊗ w(p)
∏

µ:gµ=1

ξµe
i
∑
ν nνpν (40)

and the corresponding 1-dimensional irreps of S, ρ1
S(ξ, p), have characters

{±d(g)t(n)}d(g)t(n)/∈Z(S) {−d(g)t(n)}d(g)t(n)∈Z(S) {d(g)t(n)}d(g)t(n)∈Z(S)

↑
ρ1
S(ξ, p)

∏
µ:gµ=1 ξµe

i
∑
ν nνpν

∏
µ:gµ=1 ξµe

i
∑
ν nνpν

∏
µ:gµ=1 ξµe

i
∑
ν nνpν

↓

To find the remaining 1
4N

3 irreps of S, we make use of relation (38), which gives a homomorphism θ from T to the group
of automorphisms of D

θ(t(n)) : ±d(g) 7→ ±t(n)d(g)t(n)−1 (41)

Since D has a single 4-dimensional irrep, ρ4
D, given t(n) we have ρ4

D ◦ θ(t(n)) as a 4-dimensional irrep of D equivalent to
ρ4
D, and some 4× 4 transformation matrix P (t(n)) such that

P (t(n))ρ4
D(±d(g))P (t(n))−1 = ρ4

D ◦ θ(t(n))(±d(g)) ⇔ P (t(n))MµP (t(n))−1 = (−1)nµMµ (42)

whereby n4 is taken to be identically 0. By Schur’s lemma, the transformation matrices P (t(n)) form a projective repre-
sentation of T , and in particular the choice %4

T defined as

%4
T (t(ν̂)) = γν

%4
T (t(n)) =

∏
ν

γnνν =
∏

ν:nν /∈2ZN

γν (43)

has its factor set fT taking values in {±1}

%4
T (t(ni))%4

T (t(nj)) = fT (t(ni), t(nj))%4
T (t(ni)t(nj)), fT (t(ni), t(nj)) ∈ {±1} ∀ (ni, nj) (44)

By property (3) S has the structure

S = {±d(g)t(n) : d(gi)t(ni)d(gj)t(nj) = d(gi)θ(t(ni))(d(gj))t(ni)t(nj)} (45)

therefore by (42) the map %4
S defined as

%4
S(±d(g)t(n)) = ρ4

D(±d(g))%4
T (t(n)) (46)
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is a projective representation of S, with its factor set fS inherited from that of %4
T

fS(±d(gi)t(ni),±d(gj)t(nj)) = fT (t(ni), t(nj)) (47)

Since the 4-dimensional projective representation of T , %4
T , given by (43) maps the generators of the abelian group,

{t(ν̂)}ν∈{1,2,3}, to anticommuting matrices, we are inspired to find a 2-dimensional projective representation of T , %2
T ,

defined as

%2
T (t(ν̂)) = σν

%2
T (t(n)) =

∏
ν

σnνν =
∏

ν:nν /∈2ZN

σν (48)

such that it has the same factor set as that of %4
T , fT . By property (3) we also have

q : S → S/D ∼= T (49)

therefore we can lift %2
T up to the corresponding 2-dimensional projective representation of S, %2

S , with the same factor set
as that of %4

S , fS . Similarly we can lift ρ1
T (p) up to ρ1

S(p) as a 1-dimensional true representation of S. Finally, we define
an 8-dimensional projective representation of S, ρ8

S(p), as the tensor product

ρ8
S(p) = ρ1

S(p)⊗ %2
S ⊗ %4

S (50)

and see that it has the trivial factor set f∗S

f∗S(±d(gi)t(ni),±d(gj)t(nj)) = fS(±d(gi)t(ni),±d(gj)t(nj))2 ≡ 1 (51)

and is thus in fact a true representation of S. Explicitly, we have the group elements of S represented as the 8× 8 matrices

ρ8
S(p)(±d(g)t(n)) = ±ei

∑
ν nνpν

∏
ν:nν /∈2ZN

σν ⊗Mg

∏
ν:nν /∈2ZN

γν (52)

and taking the product of traces of the matrices %2
S(±d(g)t(n)) and %4

S(±d(g)t(n)), we obtain the character of ρ8
S(p) as

{±d(g)t(n)}d(g)t(n)/∈Z(S) {−d(g)t(n)}d(g)t(n)∈Z(S) {d(g)t(n)}d(g)t(n)∈Z(S)

ρ8
S(p) 0 −8ei

∑
ν nνpν 8ei

∑
ν nνpν

ρ8
S(p) is irreducible as its character obeys the relation

〈χρ8S(p), χρ8S(p)〉 = 1 (53)

For each p in the range given by pν ∈ 2π
N {0, · · · ,

N
2 − 1}, define a new 8-dimensional irrep of S from ρ8

S(p), denoted by
ρ̃8
S(p), as

ρ̃8
S(p) = ρ1

S(π̌)⊗ ρ8
S(p) (54)

whereby π̌ denotes the 3-component vector (π, π, π). These 1
4N

3 irreps

{ρ8
S(p)}

⋃
{ρ̃8
S(p)}, pν ∈

2π

N
{0, · · · , N

2
− 1} (55)

give distinct characters and are thus pairwise inequivalent. We therefore exhaust the remaining irreps of S, and obtain the
full character table of group S as follows

{±d(g)t(n)}d(g)t(n)/∈Z(S) {−d(g)t(n)}d(g)t(n)∈Z(S) {d(g)t(n)}d(g)t(n)∈Z(S)

↑
ρ1
S(ξ, p)

∏
µ:gµ=1 ξµe

i
∑
ν nνpν

∏
µ:gµ=1 ξµe

i
∑
ν nνpν

∏
µ:gµ=1 ξµe

i
∑
ν nνpν

↓

↑
ρ8
S(p̀) 0 −8ei

∑
ν nν p̀ν 8ei

∑
ν nν p̀ν

↓

↑
ρ̃8
S(p̀) 0 −8(−1)

∑
ν nνei

∑
ν nν p̀ν 8(−1)

∑
ν nνei

∑
ν nν p̀ν

↓
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with p in the range given by pν ∈ 2π
N {0, · · · , N − 1} and p̀ in the range given by p̀ν ∈ 2π

N {0, · · · ,
N
2 − 1}. For each p̀, both

ρ8
S(p̀) and ρ̃8

S(p̀) give an 8-dimensional representation of T as a subgroup of S, denoted by ρ8
S(p̀)|T and ρ̃8

S(p̀)|T respectively.
Modifying (52) we have

ρ8
S(p̀)|T (t(n)) = ei

∑
ν nν p̀ν

∏
ν:nν /∈2ZN

σν ⊗
∏

ν:nν /∈2ZN

γν

ρ̃8
S(p̀)|T (t(n)) = (−1)

∑
ν nνei

∑
ν nν p̀ν

∏
ν:nν /∈2ZN

σν ⊗
∏

ν:nν /∈2ZN

γν (56)

and employing the projection formulas for the multiplicities of irreps of T in ρ8
S(p̀)|T and ρ̃8

S(p̀)|T

m
ρ8S(p̀)|T
ρ1T (p)

= 〈χρ1T (p), χρ8S(p̀)|T 〉 =
8

N3

∏
ν

∑
nν∈2ZN

einν(p̀ν−pν)

m
ρ̃8S(p̀)|T
ρ1T (p)

= 〈χρ1T (p), χρ̃8S(p̀)|T 〉 =
8

N3

∏
ν

∑
nν∈2ZN

einν(p̀ν−pν)

(57)

we deduce
ρ8
S(p̀)|T ∼= ρ̃8

S(p̀)|T = ⊕p:p=p̀+π̇ρ1
T (p) (58)

whereby π̇ denotes a 3-component vector such that π̇ν ∈ {0, π}. In other words, given p̀ with p̀ν ∈ 2π
N {0, · · · ,

N
2 − 1},

the two 8-dimensional irreps of S associated with p̀, ρ8
S(p̀) and ρ̃8

S(p̀), both couple to the eight 1-dimensional irreps of T ,
{ρ1
T (p̀+ π̇)}π̇ν∈{0,π}, but are nonetheless inequivalent representations of the whole group S taking into account the doubling

symmetry.
On the quark field, the identification of −IS to IS in the 1-dimensional irreps of S, ρ1

S(ξ, p), is unphysical, thereby we
conclude that the representation of S on the quark field decomposes into copies of ρ8

S(p̀) and ρ̃8
S(p̀) for different p̀ in the

range given by p̀ν ∈ 2π
N {0, · · · ,

N
2 − 1}. By the same reasoning the representation of S on the antiquark field decomposes

into copies of the 8-dimensional irreps of S alike.
To analyse the diquark representation and the antiquark-quark representation, it suffices to look at the four cases,

ρ8
S(p̀i) ⊗ ρ8

S(p̀j), ρ8
S(p̀i) ⊗ ρ̃8

S(p̀j), ρ̃8
S(p̀i) ⊗ ρ8

S(p̀j), and ρ̃8
S(p̀i) ⊗ ρ̃8

S(p̀j), for a particular choice of p̀i and p̀j . Taking the
products of characters of the factors we compute the characters of these four representations as follows

{±d(g)t(n)}d(g)t(n)/∈Z(S) {−d(g)t(n)}d(g)t(n)∈Z(S) {d(g)t(n)}d(g)t(n)∈Z(S)

ρ8
S(p̀i)⊗ ρ8

S(p̀j) ∼= ρ̃8
S(p̀i)⊗ ρ̃8

S(p̀j) 0 64ei
∑
ν nν(p̀iν+p̀jν) 64ei

∑
ν nν(p̀iν+p̀jν)

ρ8
S(p̀i)⊗ ρ̃8

S(p̀j) ∼= ρ̃8
S(p̀i)⊗ ρ8

S(p̀j) 0 64(−1)
∑
ν nνei

∑
ν nν(p̀iν+p̀jν) 64(−1)

∑
ν nνei

∑
ν nν(p̀iν+p̀jν)

Denoting

ρ8
S(p̀i)⊗ ρ8

S(p̀j) ∼= ρ̃8
S(p̀i)⊗ ρ̃8

S(p̀j) = ζ(p̀i, p̀j)

ρ8
S(p̀i)⊗ ρ̃8

S(p̀j) ∼= ρ̃8
S(p̀i)⊗ ρ8

S(p̀j) = ζ ′(p̀i, p̀j) (59)

we have the overlaps between ζ(p̀i, p̀j), ζ ′(p̀i, p̀j) and the 1-dimensional irreps of S, ρ1
S(ξ, p), to be

m
ζ(p̀i,p̀j)

ρ1S(ξ,p)
= 〈χρ1S(ξ,p), χζ(p̀i,p̀j)〉 =

4

N3
(1 + ξ4e

i
∑
ν p̀

i
ν+p̀jν−pν )

∏
ν

∑
nν∈2ZN

einν(p̀iν+p̀jν−pν)

m
ζ′(p̀i,p̀j)

ρ1S(ξ,p)
= 〈χρ1S(ξ,p), χζ′(p̀i,p̀j)〉 =

4

N3
(1− ξ4ei

∑
ν p̀

i
ν+p̀jν−pν )

∏
ν

∑
nν∈2ZN

einν(p̀iν+p̀jν−pν) (60)

therefore ζ(p̀i, p̀j) and ζ ′(p̀i, p̀j) each reduce to 64 1-dimensional irreps of S associated with p̀i + p̀j according to

ζ(p̀i, p̀j) = ⊕p:p=p̀i+p̀j+π̇(⊕ξ:ξ4=ei
∑
ν π̇ν ρ

1
S(ξ, p))

ζ ′(p̀i, p̀j) = ⊕p:p=p̀i+p̀j+π̇(⊕ξ:ξ4=−ei
∑
ν π̇ν ρ

1
S(ξ, p)) (61)

while the two sets of irreps from {ρ1
S(ξ, p)}p=p̀i+p̀j+π̇ do not overlap with each other.
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