University of Cambridge
Faculty of Mathematics

The Lambda Calculus

The M\ calculus is a formal language consisting of a
set, of variables z, v, z, etc.

Lambda terms: M, N ::= z|(MN)|(Ax.M)

x is a free variable in terms such as xy and A\y.xv,
but is bound in terms such as Ax.xy and Axy.zy.

a-Equivalence:
Substituting bound variables for other variables
(similar to dummy variables). eg. Ax.xy = A\z.zy

p-Equivalence:
Evaluating a A\ term, eg. (Az.xy)z = 2y

n-Equivalence:
If 2 terms [B-reduce to the same thing, they are
n-equivalent. eg. A\x.yx =y

Rewriting of equals for equals in the lambda calculus is a
(universal) form of computation. The A calculus is the basis
for functional programming languages, and is a logic of
equality between terms with terms closed under application
and function abstraction.

Combinatory Logic

An applicative structure (A, e) is just a set A, with
an application e. For this to be a combinatory logic,
there must exist an S and K in A such that:

Sabc = ac(bc)
Kab =a

Aim

L is an interpretation of the A calculus, where L(n) is the set
of terms with n free variables. C', a combinatory algebra, is
an interpretation of combinatory logic. L(n — 1) and L(n)

are isomorphic, via application on x and A-abstraction (tak-
ing a — Az.ax).

L(0) — L(1) = L(2) — L(3) — ...
ar—~aexr Axr.bx <1b

Question:
structure of an interpretation of the A-calculus on the
algebraic theory {C'(n)}n>07

Answer: Iff a — a e z is an isomorphism.

For a given application e, i1s there the

Hence for C' to be a model of L, we need isomor-
phims between

C(0) — C(1) — C(2) — ...

My aim is to find equations between combinators
which make this true.

Combinatorial Logic, orisit Really the Lambda Calculus?

Finding Equations

Peter Freyd’s idea: If C'(0) and C'(1) are isomorphic, there must be an applicative structure
(A, *) on C'(0) which corresponds to that of C'(1).

oy

The arrows must indicate maps between combinatory algebras, so must behave nicely.
Hence 0(a xb) = 6(a) e 8(b), where 0 is application on x, so (a * b)x = azx(bx) (associating
to the left). We then notice that * is just S from earlier, so we write a * b = Sab. This
now means that (C(0),S) is a combinatory algebra.

Now, for the diagram to be commutative, we want ¢(a)x = a. Notice that ¢(a) = Ka.
For K to be a nice mapping, K (ab) = K(a)* K(b) = S(Ka)(Kb). Thus our first equation,
which means that K is a map of combinatory algebras, is

K(ab) = S(Ka)(Kb)

But as (C'(0), S) is a combinatory algebra just as (C'(0), @) is, it must also have a "K" and
"S", and these must be the images of the K and S in (C(0),e). Hence they are KK and
K S. Checking that these act (under operation by S, naturally!) in the correct way gives
us 2 more equation:

correctness of K K
correctness of K.

S(S(KK)a)b = a
S(S(S(KS)a)b)c = S(Sac)(Sbc)

Finally, for 6 to be an isomorphism, we need to find a map that is its inverse. For a € C(0),
the map (C'(1),e) — (C(0),S) is just a — Ka, as inj is the constant injection. But for
the new free variable x, we notice the Ix = x (where I = Azx.x = SKK), so we map
x — I. These define the map uniquely, so the composite of this inverse with 6 must be the
identity. Hence a — ax — S(Ka)l, so our fourth equation is

S(Ka)l = a

What Next?

Hence it is these 4 equa-
tions that are necessary
(and sufficient) for C' to
be a model of the)\ cal-
culus. To get these same
equations with free vari-
ables instead of a,b and
c in C(0), just repeat the
above process, but start-
ing in C'(3). Now you can
substitute any free vari-
able for any A\ term.
Comparing our equations
with Curry’s:

Our Equations

K(zy) = S(Kz)(Ky)
S(S(KK)x)y = x
S(S(S(KS)x)y)z = S(Szz)(Syz)
S(Kzx)l =x

Curry’s Equations

S(S(KS)(S(KK)(S(KS)K)))(KK) = S(KK)
S(KS)(S(KK)) = S(KK)(S(S(KS)K)(K(SKK)))
S(K(S(KS)))(S(KS)(S(KS))

S(S(KS)K)(K(SKK)) = SKK

These are actually the same equations; by
finding isomorphic equations in C'(0) (and
simplifying using our 4" equation) we de-
duce Curry’s equations from ours. Simi-
larly, A-abstracting Curry’s equations and
Bn-reducing gives our equations.

It is an interesting question to understand
what happens if you have some equations
and not others. What happens if you have

) all equations save the 4*" is worth think-
= S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))S))))(KS) ing about: the 4*1 is a kind of uniqueness
typical of universal properties in category
theory and that does not seem computa-
tionally essential.

Josie Smith
Prof Martin Hyland

Generalising

As (C(0),S) is also a combinatory algebra with KK and KS, we
can draw a similar diagram, and repeat the process described above.

(C(1),S) Sax

1n] \ \
(C(0),5) 0
a % (C(0),KS) a

S(KK)a

So a — S(KK)a, as the application we are now working under is S. It
is important to remember that K and S are not only a function and an
application, but also elements in C'(0).

Betore, we had 4 equations, plus the definitions of K and S. Similarly
by imposing the "niceness'" of the maps in the new diagram, we can get
4 more equations, which are not included as they are long complicated,
and not particularly enlightening.

We can also map the new K and S to ones in (C(0), K.S), and get even
more equations! This could go on indefinitely. Here are recursive relations
to calculate the new K and S, and 4 equations for each level. Lower case
k and s are the "actual" terms in C(0), whereas upper case K and S are
the function and application respectively, written acting on a and b.

Level 1 ki = K s1 =295

(C(O),S()ZO) K1 = Ka Sl = Sab

Level n kn — Sn—an—lkn—l Sn — n—an—lsn—l
(C(n), Sn—l) Kn — Sn—lkna Sn — Sn—l(sn—lsn@)b
Equations: Sn(Kpii1a)r = a

K, (S,_1ab) = S, (K,a)(K,b)
Sn(Snii1ab)x = S, (Snax)(S,bx)
Sn(Kpa)l = a

It is these relationships between
the combinators that make a
combinatory algebra into a A(8n)
calculus. However, when try-
ing to find similar equations to
make a combinatory algebra into
a A(8) calculus without the 7-
equivalence rule, there are a
few more. Instead of isomor-
phisms we have retracts and
these, unlike the isomorphisms,
are not uniquely determined by
the structure given, so the situa-
tion looks more subtle.

