
Natural Convection in Melting Icicles 
Simon Schulz (2nd Year Undergraduate) 

Introduction 
 
The aim of this project was to understand the physical principles involved in the 
melting of an icicle and to develop a model that is able to predict the shape evolution 
of an icicle with arbitrary initial shape. The project comprised both an experimental 
and a theoretical part. The experimental aspect consisted in using Schlieren 
photography to resolve the thin convective boundary layers that exist in the vicinity of 
the surface of the ice. The theoretical piece focused on using elements of boundary 
layer theory and convective heat transfer to find governing equations for the problem 
and attempting to solve these numerically. 
 
This work was undertaken by myself and Anthony Fragoso, an undergraduate at Yale 
University, with the support of our project supervisors Jerome Neufeld (DAMTP) and 
Grae Worster (DAMTP). 
 

Experiment 
 
As already mentioned in the introduction, we made use of Schlieren photography to 
visualise the convective boundary layers that occur on the surface of the icicle. The 
setup of the experiment is shown below (in plan view).  
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The aim of the experimental method is to obtain data corresponding to the variation in 
ice shape and boundary layer height during a complete melting cycle of a right 
circular cylinder of ice. 
 
Description of Schematic: Light from an LED hits the focal point of a parabolic 
mirror, the light is then reflected past the ice cylinder (in this region refraction occurs 
because of the varying temperature gradients which cause varying density gradients). 
The beam is then reflected at another parabolic mirror and the image is recorded by a 
digital camera. 
 
Schlieren is able to resolve the temperature gradients, it does so by obstructing some 
of the light that comes from the object being observed: we use a knife-edge 
(physically, a razor blade) to ‘cut-off’ high spatial frequency components. The only 
problem is that using a knife-edge means that we are only able to resolve the 
boundary layers in one direction; hence in one photograph we only get vertical or 
horizontal boundary layers. What I was therefore trying to implement in the last week 
of the project was a “Pinhead Schlieren” method, where the knife-edge is replaced by 
a pinhead. This meant being able to resolve the boundary layers in any direction. 
However, after running an experiment with this method we realised that the images 
were of much lower quality than the ones obtained using the knife-edge. In my final 
days at DAMTP I tried a different method- using a wedge- in order to obtain the 
vertical and horizontal boundary layers, but again after running an experiment we 
realised that this was unsuccessful in providing useful data. In both the pinhead and 
the wedge I think that the reason for the bad results was that too much light was being 
obstructed, i.e. the radius of the pinhead was not well-suited to the size of the beam of 
light. 
 
After having obtained images, we made use of image processing techniques to plot 
the ice shape as a smooth curve, with the boundary layer superimposed on it. All of 
this part of the project was done using Matlab code. Sample results are shown below 
for a melting icicle after approximately three hours. 
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The method used to obtain the boundary layer is as follows: 
 

1. We range along the ice edge (going from one coordinate pair to the next- note 
that although the curve is smooth the data is still discrete). Fix that point. 

 
2. If that point is on one of the vertical sides 

then range horizontally (range vertically if the 
point is on the horizontal side). Plot the pixel 
intensity variation in the greyscale conversion of 
the image as a function of distance (along normal) 
from the interface. Then, we note that the decay 
in intensity normally away from the surface of the 
icicle is exponential. We therefore fit a curve and 
make the experimentally motivated assumption 
for the functional form of the temperature decay 
(written below to the left). 
 
 

3. Finally, by matching the curve fitting 
coefficients to the assumed profile we are able to 
extract the value of the boundary layer height as a 
function of arc length away from the tip of the 
icicle; a variable which we call x. 
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Theory 
 
The governing equations for our problem are shown below. 

 
 
 
 

 
 
 

 
 
 

 
 
 
 

 
 
 

 
The first two equations are Navier Stokes in two dimensions (this is enough to 
describe the problem in three dimensions since we assume axisymmetry). The third 
equation is the heat equation, representing the usual conservation of heat. The fourth 
is incompressibility and the final equation is the usual gas law used to model an ideal 
gas such as air. 
 
Our task is to solve the above system of PDE’s. To simplify the job we need to 
assume suitable profiles for the above functions, motivated by the physics governing 
the situation. These are 
 

 
 

 
 
 

 
 

 
Where we have introduced the similarity variable 
 
 
 
These are the same profiles introduced in the paper published by Goldstein, Neufeld 
& Worster (2000). 
  



Where the z coordinate is displacement normally away from the surface of the ice, 
and the angle φ is the angle between the horizontal and the tangent vector. 
 
Then, we can use an integral representation of the boundary layer equations to 
proceed, i.e. we integrate the whole equation in the z direction from 0 to h(x). In order 
to do this we have to assume a temperature variation (we use the same experimentally 
motivated profile as shown in the previous section). And using thin-layer (lubrication 
theory) approximation that the flow is parabolic in the boundary layer (this is the 
usual gravity current analysis with zero shear stress on the free surface)- see below. 
 
 
 
 
 
Having done this it is possible to carry out the integration and to obtain a differential 
equation in h(x). 
 
After suitable non-dimensionalisation the equation reduces to the gravity current 
equation for an inclined plate. And this makes physical sense. 
 
(1) 
 
 
Solving this then allows us to solve the system of ODE’s that we obtain from 
plugging the assumed profiles into the PDE’s. Having done this, we have an 
expression for the temperature gradient in the normal direction, and thus using the 
Stefan condition, an expression for the normal melt rate (written v subscript n). 
 
Using a Langer argument analogous to his ‘String Model’ in his 1987 paper we can 
find the local curvature (H) and thus φ. This allows us to predict the shape evolution 
of the melting icicle. 
 
(2) 
 
 
 
We have yet to solve equation (1) numerically, and this summarises at which stage we 
are in the theoretical solution of the problem. 

Conclusions 
 
Overall, the aim was to compare the theoretical model with experiment, which we are 
not in a position to do at this present time. However, even though we are not able to 
fully assess the validity of the theory by direct comparison with experiment I have 
thoroughly enjoyed working on this project and have learned much interesting 
physics. I would like to thank my supervisors and sponsors for enabling me to 
participate in this project, hosted by DAMTP. 
 
Simon SCHULZ 
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