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Problem Statement 

Noisy, blurred image can be described as f u  K , where  ( )u u x  denotes the original 

image to recover,  is the random noise (unknown), f  is the corrupted image (observation), 

and K  is the blurring operator. The task is to reconstruct u from known K  and f .   This 

problem can be turned into a minimization problem, and the cost functional to minimize is 

( ) ( ) || ||DC u F u u f  K  

Blurring operator K  is an integral operator of form [ ]( ) ( ') ( ')
D

u x K x x u x dx K              

|| ||D  denotes the 
2L  norm on domain D , ( ')K x x is the blurring kernel. 

However, since blurring operator K  is compact (bounded in 2R ), the problem of 

reconstructing u  by minimizing ( ) ( ) || ||DC u F u u f  K  is ill-posed (it inverts a compact 

operator directly). The example below demonstrates that this naive idea will not work. 

 

Fig 1. Original image to reconstruct          Fig 2. Image corrupted by 30% Gaussian Noise            Fig 3. Restored Image  

To solve this problem, we need to introduce a penalty term to the cost functional we 

minimize to restore the stability of the method. This technique is called Regularization, 

which tackles inverse problems specifically. 

 

Classical Approach: Additive Type of Regularization 

The classical regularization approach adds a small penalty term to the functional 

( ) || ||DF u u f K  we minimized before.  The cost functional to minimize is modified into 

( ) ( ) ( )RC u F u F u  , where ( ) || ||DF u u f K , and 
1

2 2 2( ) (| ( ) | )R

D
F u u x dx    

Here  is called regularization parameter. It is a small and positive real number that controls 

the regularization strength. The choice for   is crucial: if it is too small, the regularization 



effect will be too weak to stabilize the problem; while if it is too large, the problem might 

change nature and causes the algorithm to converge to the wrong image. 

Use the same example as above, the following images are constructed with different   

 

   Fig 4. Restored image with small               Fig 5. Restored image with proper             Fig 6. Restored image with large               

In Practice it is usually very time-consuming and computationally costly to determine the 

sensible value for  . Extra analysis is required. This is the motivation for a new type of 

regularization: The Multiplicative type of regularization. 

 

New Approach: Multiplicative Type of Regularization 

In this new approach, instead of adding a penalty term, we multiply the original functional 

( )F u  with regularization factor ( )RF u . The cost functional to minimize is 

( ) ( ) ( )RC u F u F u , where ( ) || ||DF u u f K , 2 2 2( ) ( ) (| ( ) | )R

D
F u b x u x dx    

Here weight function ( )b x  plays the role of regularization parameter  in the additive cost 

functional: it controls the strength of regularization. The parameter   has two functions: to 

ensure the positiveness of ( )RF u and to ensure the convexity of the highly non-linear cost 

functional ( )C u . In the algorithm, ( )b x  and   are defined iteratively in each loop:

1 1

2 22 2
1 1

(| ( ) | )
n n n

b V u x 
 

 
   and 

2

2 1

2

|| ||1

2 || ||

n n D

n

n D

b u

b
 


 .This new approach of regularization helps 

to get rid of the trouble of deciding regularization parameter totally. No extra analysis is 

required. The restored images using Additive and Multiplicative regularization are presented 

below.  

 

          Fig 7. Original Image                                 Fig 8. Restored image (Additive type )          Fig 9. Restored Image (Multiplicative Type) 



Conclusion 

Comparing these two approaches of regularization, we may conclude that in the case shown 

the multiplicative type works better than the additive type. This is because the cost 

functional ( )C u  changes in the multiplicative type regularization. As the number of 

iterations increases (n increases), ( ) ( )C u F u and the regularization effect gets weaker 

and weaker. We can see that the reconstructed solution gets closer and closer to the exact 

solution. The new functional and new iterate at each step produce a calculation that 

becomes less nonlinear, getting closer and closer to quadratic minimization. This allows 

more accurate reconstruction and thence better result is produced. 

 

Further Work 

The multiplicative type of regularization is a relatively new approach and not much research 

has been done on it. So far it is not very clear whether this algorithm will guarantee 

convergence or not. There are classical results about convergence on conjugate gradient 

methods and they work very well for minimization problems where the cost functional to 

minimize is given and fixed over all iterations. It is interesting and worth finding out whether 

these results can be extended to cases where the cost functional to minimize changes in 

each loop. 

 

References 

A.Abubakar, P.M.van den Berg, T.M.Habashy and H. Braunisch  “A Multiplicative 

Regularization Approach for Deblurring Problems,” IEEE Transactions on Image Processing, 

Vol 13, No.11, November 2004 

D.Strong and T.Chan, “Edge-preserving and scale-dependent properties of total variation 

regularization”, Institute of Physics Publishing, Inverse Problems 19, pp165-187, 2003 

 


