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Introduction
The symmetric groups, Sn, are probably the most important class of finite groups

due to Cayely’s theorem (Every group G is isomorphic to a subgroup of a symmetric

group). The ordinary representation theory of Sn is relatively well understood, but

the modular theory, started by Dickson in 1902 and advanced massively by Brauer in

1935, is still under development. Indeed elementary quantities such as the dimension

of the irreducible p-modular representations are still widely unknown.

On this poster, we shall construct the irreducible ordinary and modular representations

for the finite symmetric group. In ordinary representation theory, we can explicitly de-

scribe how the obvious permutation modules decompose into the irreducible ones and

we can begin to consider how these are linked to the p-modular representation. This

brings us the very rich research area of decomposition matrices. These show the fac-

tors of the irreducible ordinary representations on reduction modulo p.

Definitions
The collection of all permutations of {1, 2, ..., n} forms a group under the composition of functions.

We call this group Sn and is the focus of this theory.

We say ρ : G→ GL(V ) is a representation forG if ρ is a group homomorphism (i.e ρ(ι) = IdV : v → v

where ι is the identity in G and ∀σ, τ ∈ Sn, ρ(στ ) = ρ(σ)ρ(τ )). Here V is a vector space over a field

F and GL(V ) is the group of automorphisms of V . V is often called a G-module. If the characteristic

of F does not divide the order of the group, we call this an ordinary representation otherwise, it is a

modular representation.

As with prime numbers within the natural numbers, it is beneficial to consider the irreducible compo-

nents of these representations. We say ρ (or V ) is irreducible if there does not exist U , a proper subspace

of V , such that ∀σ ∈ Sn σU ⊂ U .

Combinatorial Tools
An elementary result of ordinary representation theory states that the number of irreducible inequiv-

alent representations of a group G is equal to the number of conjugacy classes for G. In the case of

Sn, the conjugacy classes are characterised by the partitions of n (e.g (4, 3, 3, 1) is a partition of 11 as

4+3+3+1 = 11, we often abbreviate this to (4, 32, 1)), so we should attempt to construct an irreducible

FSn-module for each partition of n.

Fix a partition µ, the diagram for µ is a collection of crosses showing the shape of µ. This is best de-

scribed in the form of an example, the diagram of (3, 2) is
X X X

X X
and that of (4, 32, 1) is

X X X X

X X X

X X X

X

.

A µ-tableau is a diagram for µ where the numbers 1, 2, ..., n replace the X’s. Continuing the example

above, t =
2 5 1 3

8 7 4

6

is a (4, 3, 1)-tableau.

Finally, a tabloid is a µ-tableau where the order with each row is unimportant, this is written as

{t} =
2 5 1 3

8 7 4

6

=

1 2 3 5

4 7 8

6

.

Constructing Representations
We can now define the module Mµ as the vector space over a field F with basis consisting of the

µ-tabloids and Sn acts on the basis of tabloids component wise, e.g. for π = (1, 2)(3, 4) ∈ S5,

π

(
1 2 3

4 5

)
=
π (1) π (2) π (3)

π (4) π (5)
=

2 1 4

3 5
=

1 2 4

3 5
.

Alternatively, this can be thought of as the permutation module of Sn acting on the cosets of the Young

subgroup Sµ := Sµ1 × Sµ2 × ...× Sµk where µ = (µ1, µ2, ..., µk). In most cases this is not irreducible,

indeed the subspace generated by the sum of the µ-tabloids is a one dimensional subspace, on which

Sn acts trivially.

We now seek a particular type of submodule, called the Specht module. Define κt =
∑

(sign π)π

where the sum is taken over the elements of the column stabiliser of t. A polytabloid is defined as

et = κt{t} ∈Mµ. For example, if t =
1 2 3

4 5
, then κt = ι− (1, 4)− (2, 5) + (1, 4)(2, 5) and

et =
1 2 3

4 5
−

4 2 3

1 5
−

1 5 3

4 2
+

4 5 3

1 2
.

Notice all the coefficients of the tabloids in et are ±1 and ∀π ∈ Sn, πet = eπt. Define Sµ to be

the vector subspace of Mµ generated by these polytabloids. The previous comments show that Sµ is

actually a submodule of Mµ generated by any one polytabloid.

To deal with irreducibility, we require the Submodule Theorem: If U is a submodule of Mµ, the either

U ⊃ Sµ or U ⊂ Sµ⊥, where Sµ⊥ is the orthogonal complement with respect to the bilinear form

< t1, t2 >= 1 if {t1} = {t2} and 0 otherwise. An immediate corollary of this is that the quotient

module, Sµ

Sµ∩Sµ⊥, is zero or irreducible.

Ordinary Representations
In the ordinary case, < ∗, ∗ > is an inner product so Sµ ∩ Sµ⊥ = {0} and Sµ is irreducible. It can be

shown that Sµ ∼= Sλ if and only if µ = λ so these form a complete set of irreducible ordinary modules

for Sn. As with other permutation modules, Mµ and Sλ depend only on the prime subfield (ie the

subfield generated by the 1).

For the characteristic zero case it suffices to only consider the field Q. In this case, the decomposition

of Mµ into the Specht modules Sλ is given by Young’s rule: the multiplicity of Sλ as a factor of Mµ is

the number of semistandard λ-tableaux of type µ, where a tableau has type µ = (µ1, µ2, ..., µk) if the

tableau contains µ1 1’s, µ2 2’s, etc. It is semistandard if the numbers strictly increase down the columns

and are non-decreasing along the rows. This reduces the complex algebraic questions of decomposition

into a simple case of counting.

As an example, we shall calculate the multiplicity of S(4, 3
2, 1) as a factor of M (3, 24). By Young’s rule,

we seek semistandard (4, 32, 1)-tableau of type (3, 24), these are listed below:
1 1 1 2

2 3 3

4 4 5

5

,

1 1 1 2

2 3 4

3 4 5

5

,

1 1 1 2

2 3 4

3 5 5

4

,

1 1 1 3

2 2 3

4 4 5

5

,

1 1 1 3

2 2 4

3 4 5

5

,

1 1 1 3

2 2 4

3 5 5

4

,

1 1 1 4

2 2 3

3 4 5

5

,

1 1 1 4

2 2 3

3 5 5

4

,

1 1 1 4

2 2 4

3 3 5

5

,

1 1 1 5

2 2 3

3 4 4

5

,

1 1 1 5

2 2 3

3 4 5

4

,

1 1 1 5

2 2 4

3 3 5

4

.

Therefore, S(4, 3
2, 1) occurs with multiplicity 12.

Modular Representations
Now we understand the ordinary representations, we can now change focus to the modular represen-

tations. An advanced result within modular representation theory states that the number of irreducible

modular representations is equal to the number of conjugacy classes whose elements have order co-

prime to char(F ) = p. For Sn, this is equal to the number of partitions whose components are all

coprime to p (as the order of an element with cycle type (µ1, µ2, ..., µk) is the least common multiple

of µ1, µ2, ... , µk). This in turn is equal to the number of partitions of n in which no component is

repeated p times, called the p-regular partitions. Otherwise we say µ is p-singular. Conveniently, it

is precisely for the p-regular partitions that Dµ := Sµ

Sµ∩Sµ⊥ is non-zero. This gives all the irreducible

p-modular representations for Sn.

Decomposition Matrices
A decomposition matrix records the multiplicities of the irreducible p-modular representations Dλ (for

λ p-regular) in the reductions of the irreducible ordinary representations Sµ. Explicitly the rows are

parametrised by the Sµ and the columns by the Dλ, and the entry at (Sµ, Dλ) is the multiplicity of Dλ

as a factor of the reduction modulo p of Sµ. The previous discussion shows, for µ p-regular, (Sµ, Dµ)

is non zero, indeed this factor is unique, so (Sµ, Dµ) = 1.

Given partitions µ = (µ1, µ2, ..., µk) and λ = (λ1, λ2, ..., λk) of n, we define a partial order by µ . λ

if and only if ∀i,
∑i
j=1 µj ≥

∑i
j=1 λj. For example (4, 32, 1) > (4, 3, 22).

One can show that Dµ is a factor of Sλ only if µ . λ. This forces the decomposition matrix to have the

following shape: 

1 0
. . .

∗ 1

∗


Where we have ordered the columns according to the partial order and the rows such that all the p-

regular partitions occur before the p-singular partitions.

As of yet, there is no general algorithm for calculating these matrices, however there are many partial

results for particular characteristics and partitions. The following theorem gives a flavour of the results

currently known and constructs the section of the decomposition matrix corresponding to the partitions

of the form (x, 1n−x), called the hook partitions:

Theorem: Suppose p is odd.

1. If p does not divide n, all the hook representation of Sn are irreducible as p-modular representations

and no two are isomorphic.

2. If p divides n, part of the decomposition matrix of Sn is
(n) 1 1 0

(n− 1, 1) 1 1

(n− 2, 12) 1 1
... . . .

(2, 1n−2) 1 1

(1n) 0 1

For the interested reader, I point them to ”The Representation Theory of the Symmetric Groups” by

G. D. James which contains thorough proofs of the information on this poster and many other results in

this field.


