
Professor John Clarkson; Director, Cambridge EDC 
Telephone: +44-1223-748245; Fax: +44-1223-332662 

Web: www-edc.eng.cam.ac.uk; Email: pjc10@cam.ac.uk 
 

The Cambridge EDC undertakes research to create knowledge, 
understanding, methods and tools to improve the design process.  

Summary and 
Recommendations 
We developed a dynamic MDO formulation and translated it 
into our differential geometry framework.  As a result, we can 
now visualize and interpret the problem’s structure.  With this 
foundation in place, we can look at open questions in dynamic 
MDO and use differential geometry tools to solve them. 

Dynamic MDO – Formulation 
Optimal control has two parts: controller design (time-varying) and plant 
design (time-invariant).  For dynamic MDO, the controller has objective 
function S and dynamics defined by ξ, and the plant has objective f and state 
equations h (ignoring any inequalities).  We now have control variables u, and 
y changes in time. Designers typically combine S and f to make the problem 
single-objective. 
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MDO and Differential 
Geometry 
Multidisciplinary Design Optimization (MDO) deals with the 
optimization of systems which have coupled subsystems; the 
relationships between these subsystems are defined by the state 
equations.  We have previously developed a differential geometry 
framework for investigating MDO: the state equations define the 
feasible design space, which is a manifold (Mfeas), and we can 
analyze that manifold with differential geometry. 

Hamiltonian and 
Lagrangian Perspectives 
We are currently using a Lagrangian approach – only spatial 
coordinates and time – but we could consider a Hamiltonian 
perspective, and this would produce a phase space instead.  
These different viewpoints could each provide different 
insights into dynamic MDO. 

MDO Formulation 
MDO problems have an objective function f, inequality constraints 
g, state equations h, design variables w, and state variables y 
defined by the state equations; Mfeas is Riemannian, and f is just a 
function on the manifold.  We can calculate the (induced) metric 
gij on the manifold from the state equations. 

Dynamic MDO – 
Constraints and Curvature 
Constraints on variables define manifold boundaries, and 
constraints on variable derivatives act like light cones limiting 
feasible control trajectories.  We can see how manifold 
curvature could interact with these ‘light cones’ to alter the 
range of potential trajectories. 

Project Aims and Motivations 
Unlike many real designs, MDO formulations are time-invariant.  
We want to improve MDO by making it dynamic (i.e. incorporate 
optimal control).  To do this, we will formulate the dynamic MDO 
problem, extend our framework to describe this problem with 
differential geometry, and do some preliminary analysis. 

Dynamic MDO – Manifolds and 
Metrics 
Dynamic MDO has a fibre bundle structure: the plant is the base, and the 
controller is the fibre.  The base is Riemannian, and depending on how time is 
handled, the fibre is either Riemannian or pseudo-Riemannian; there are 
potential analogies to relativity in the pseudo-Riemannian case.  Either way, 
we can calculate the metrics for both the base and the fibre. 
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