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Introduction: the internal structure of the axoneme

Sperm use beating flagella to transport fluid and achieve motility. We
aim to extend upon existing models for the motion of such flagella by
incorporating more detail related to the structure of the axoneme- the
central cytoskeletal core of sperm flagella.

Within the cylindrical axoneme of sperm, 9 doublet microtubules are
arranged around 2 inner microtubules. Microtubules are long cylindrical
structures composed of polymers of tubulin. The outer doublets are
connected by elastic links called nexin.

Figure : Cross section of the axoneme

Dyneins are motor proteins that also work as the facilitator of
coordinated movement and bending of the doublets and axoneme.
Dynein arms extend from the A tubule of one doublet to the B tubule of
an adjacent doublet, and, when attached, allow doublets to slide relative
to each other. The structural restraints of the axoneme prevent doublets
from sliding completely apart and result in bending of the axoneme.

Modelling flagella as two parallel filaments

Due to the symmetry of the axoneme, it is convenient to model sperm
flagella as two filaments, with constant separation width a. The shear
force density produced by the internal structure of the axoneme is f (s, t).
By considering forces and moments, we can derive an equation of motion
in the angle α(s, t) between t̂ and êx. After solving, the beating patterns
can then be plotted and analysed.

Figure : r(s, t) is the position of a point which is an arclength s along the neutral central
line of the flagellum (dashed curve) at a time t, relative to the fixed frame {êx, êy}. The
internal shear force f (s, t) acts tangentially and in opposite directions on the sliding
filaments ~r1 and ~r2.
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The passive filament case

Due to geometrical constraints, when the flagellum bends the two
filaments travel different distances. The difference in arclength of the
two filaments can be expressed as a function ∆(s): we assume that
the internal shear force density is proportional to this quantity,
f (s) = k∆(s). The linearised equation of motion can be solved
using boundary conditions relating to force and torque at either end
of the flagellum:

....
α − µα̈ = iSp4α

Sp is the sperm compliance parameter, characterising the relative
importance of elastic forces to viscous drag.

The optical trap experiment

The flagellum is modelled with a given position at s = 0, the base,
to mimic an experiment in which a filament is optically trapped and
wiggled.

Figure : Comparison of beating patterns for flagella with different coefficients of
internal forcing, k . The value of k is smaller in the first plot, corresponding to a
smaller amount of force. γ = 1 corresponds to zero basal sliding resistance; γ = 2
corresponds to rigid anchoring at the base.

By varying parameters and considering solutions in this manner, we
hope to identify a dynamical version of the counterbend
phenomenon; this is where the induction of curvature in one part of
a passive flagellum induces a compensatory countercurvature
elsewhere.

Figure : The counterbend phenomenon for a static flagellum

Geometric clutch hypothesis

The key idea of the hypothesis as proposed by Lindemann is that dyneins form
bridges with a probability proportionate to the interdoublet spacing. Since the
transverse force (t-force) is responsible for regulating the interdoublet spacing, it is
the primary determinant of dynein activation and deactivation, and is consequently
responsible for initiating and terminating episodes of microtubule sliding.

Figure : T-force Attachment of bridges on one side of the axoneme decreases the probability of bridging
on the opposite side due to effect of transfer of forces through the interdoublet links.

In his papers, the total t-force is the sum of the local t-force and the global t-force
where the local t-force is the longitudinal component of the elastic force, FL caused
by stretching of nexins and

Global t-force = α̇× Ftotal

with

Ftotal(n) =
30∑
i=n

(FL(i) + FA(i))

the total longitudinal force on a doublet where FA = active (longitudinal) pulling
force of the dynein bridge. This total t-force is then fed into the algorithm for
activation/termination of dynein bridges together with the consideration of force
transfer between doublets and the effect of bridge adhesion.

Figure : Bridge adhesion As bridges attach, they pull adjacent doublets slightly closer, increasing the
chance that neighbouring dynein heads will also attach. It is also true conversely.

However, this formulation has a critical error. The total longitudinal force on a
doublet should be

Ftotal = t̂.

∫ L

s

~f ds ′

where ~f = f‖t̂ + f⊥n̂. Hence, to proceed with a more rigorous model of the
hypothesis, we extend the previous model on passive filament to incorporate the ideas
of the geometric clutch hypothesis. Firstly, the width a = a(s, t) changes according
to Hooke’s law with an unknown elastic constant in the normal direction. The shear
force density will then be modified to be the sum of the passive contribution, f and
also the active contribution, factive where factive is some probability distribution
dependent on a together with the effect of force transfer and bridge adhesion. The
governing equations will then be solved numerically.


