Residual Finiteness of Graph Wreath Products

Amy Needham

Summer Research Festival 2025

Table of Contents

Residual Finiteness

2 Products of Residually Finite Groups

Proof of Backwards Direction

Table of Contents

Residual Finiteness

Products of Residually Finite Groups

3 Proof of Backwards Direction

• It is incomputable when two groups are isomorphic

- It is incomputable when two groups are isomorphic
- We may want partial algorithms

- It is incomputable when two groups are isomorphic
- We may want partial algorithms
- One such algorithm is comparing finite quotients

- It is incomputable when two groups are isomorphic
- We may want partial algorithms
- One such algorithm is comparing finite quotients
- When does this fail?

Definition

A group G is residually finite if for every non-identity element $g \in G$ there is a finite quotient G/N, with $N \subseteq G$ such that $gN \neq N$

Definition

A group G is residually finite if for every non-identity element $g \in G$ there is a finite quotient G/N, with $N \subseteq G$ such that $gN \neq N$

Remark

There are several equivalent definitions we may use interchangably today

Definition

A group G is residually finite if for every non-identity element $g \in G$ there is a finite quotient G/N, with $N \subseteq G$ such that $gN \neq N$

Remark

There are several equivalent definitions we may use interchangably today

• This gives an instance of failure

Definition

A group G is residually finite if for every non-identity element $g \in G$ there is a finite quotient G/N, with $N \subseteq G$ such that $gN \neq N$

Remark

There are several equivalent definitions we may use interchangably today

- This gives an instance of failure
- This motivates the study of residual finiteness

Examples

• All finite groups are residually finite

Examples

- All finite groups are residually finite
- $\bullet \ \mathbb{Z}$ is residually finite

Examples

- All finite groups are residually finite
- ullet $\mathbb Z$ is residually finite
- All finitely generated linear groups are residually finite (Malcev, 1940)

Examples

- All finite groups are residually finite
- ullet $\mathbb Z$ is residually finite
- All finitely generated linear groups are residually finite (Malcev, 1940)

Examples

 $\bullet \ \mathbb{Q}$ is not residually finite

Examples

- All finite groups are residually finite
- ullet $\mathbb Z$ is residually finite
- All finitely generated linear groups are residually finite (Malcev, 1940)

Examples

- ullet $\mathbb Q$ is not residually finite
- Every divisible group is not residually finite

Table of Contents

Residual Finiteness

2 Products of Residually Finite Groups

3 Proof of Backwards Direction

Direct and Free Products

Proposition

Direct products of residually finite groups are residually finite

Direct and Free Products

Proposition

Direct products of residually finite groups are residually finite

Definition

The Free Product of two groups G, H, denoted G * H is the group given by words in the elements of G * H, where we combine together consecutive elements of G, or of H via multiplication in their group (and where both identities do nothing)

Direct and Free Products

Proposition

Direct products of residually finite groups are residually finite

Definition

The Free Product of two groups G, H, denoted G*H is the group given by words in the elements of G*H, where we combine together consecutive elements of G, or of H via multiplication in their group (and where both identities do nothing)

Theorem

Free products of residually finite groups are residually finite

Definition

Given a graph G = (V, E) and a group Γ , the Graph Product, $G(\Gamma)$, is the free product of Γ with itself V-many times, quotient by "two copies of Γ commute if there is an edge between their vertices"

Definition

Given a graph G=(V,E) and a group Γ , the Graph Product, $G(\Gamma)$, is the free product of Γ with itself V-many times, quotient by "two copies of Γ commute if there is an edge between their vertices"

Examples

• If $E = V^2$, then $G(\Gamma) = \Gamma^{\oplus V}$

Definition

Given a graph G = (V, E) and a group Γ , the Graph Product, $G(\Gamma)$, is the free product of Γ with itself V-many times, quotient by "two copies of Γ commute if there is an edge between their vertices"

Examples

- If $E = V^2$, then $G(\Gamma) = \Gamma^{\oplus V}$
- If $E = \emptyset$, then $G(\Gamma)$ is the free product of V-many copies of Γ

Definition

Given a graph G = (V, E) and a group Γ , the Graph Product, $G(\Gamma)$, is the free product of Γ with itself V-many times, quotient by "two copies of Γ commute if there is an edge between their vertices"

Examples

- If $E = V^2$, then $G(\Gamma) = \Gamma^{\oplus V}$
- If $E = \emptyset$, then $G(\Gamma)$ is the free product of V-many copies of Γ

Theorem

The graph product of a residually finite group is residually finite (Green, 1990)

Definition

Suppose G, H are groups, and we have a homomorphism $\phi: H \to \operatorname{Aut}(G)$. The semi-direct product, $G \rtimes H$ is the group with underlying set $G \times H$, and operation $(g,h)(g',h') = (g\phi(h)(g'),hh')$

Definition

Suppose G, H are groups, and we have a homomorphism $\phi: H \to \operatorname{Aut}(G)$. The semi-direct product, $G \rtimes H$ is the group with underlying set $G \times H$, and operation $(g,h)(g',h') = (g\phi(h)(g'),hh')$

Examples

• $G \times H = G \times H$ if ϕ is the trivial map

Definition

Suppose G, H are groups, and we have a homomorphism $\phi \colon H \to \operatorname{Aut}(G)$. The semi-direct product, $G \times H$ is the group with underlying set $G \times H$, and operation $(g,h)(g',h') = (g\phi(h)(g'),hh')$

Examples

- $G \times H = G \times H$ if ϕ is the trivial map
- $S_3 = C_3 \rtimes C_2$

Definition

Suppose G, H are groups, and we have a homomorphism $\phi \colon H \to \operatorname{Aut}(G)$. The semi-direct product, $G \rtimes H$ is the group with underlying set $G \times H$, and operation $(g,h)(g',h') = (g\phi(h)(g'),hh')$

Examples

- $G \times H = G \times H$ if ϕ is the trivial map
- $S_3 = C_3 \rtimes C_2$
- If $N \subseteq G$, $H \subseteq G$, $H \cap N = \{e\}$ and HN = G, then $G = N \rtimes H$

Graph Wreath Products

Definition

Given a graph G, groups Γ, Δ , and an action $\Gamma \bigcirc G$ via graph automorphisms, we define the graph wreath product of Γ and Δ over G to be $G(\Delta) \rtimes \Gamma$, with the action $\Gamma \bigcirc G(\Delta)$ induced by the action $\Gamma \bigcirc G$

Graph Wreath Products

Definition

Given a graph G, groups Γ, Δ , and an action $\Gamma \bigcirc G$ via graph automorphisms, we define the graph wreath product of Γ and Δ over G to be $G(\Delta) \rtimes \Gamma$, with the action $\Gamma \bigcirc G(\Delta)$ induced by the action $\Gamma \bigcirc G$

Examples

- If $G = (V, V^2)$, this is the combinatorial wreath product of Δ and Γ
- If $G = (\Gamma, \emptyset)$, then $G(\Delta) \rtimes \Gamma \cong \Gamma * \Delta$

Residual Finiteness of Wreath Products

Theorem

(Cornulier, 2014) If X is a set, $\Gamma \supseteq X$ and $G = (X, X^2)$, then $G(\Delta) \rtimes \Gamma$ is residually finite if and only if Δ, Γ are residually finite and either:

- $oldsymbol{0}$ B is abelian and all vertex stabilisers are profinitely closed in G, or
- ② all vertex stabilisers have finite index in G.

The special case of $X = \Gamma$ with Γ acting by left multiplication is due to (Grünberg, 1957)

Residual Finiteness of Wreath Products

Theorem

(Cornulier, 2014) If X is a set, $\Gamma \supseteq X$ and $G = (X, X^2)$, then $G(\Delta) \rtimes \Gamma$ is residually finite if and only if Δ, Γ are residually finite and either:

- $oldsymbol{0}$ B is abelian and all vertex stabilisers are profinitely closed in G, or
- ② all vertex stabilisers have finite index in G.

The special case of $X=\Gamma$ with Γ acting by left multiplication is due to (Grünberg, 1957)

These results motivate the study of residual finiteness of graph wreath products

Residual Finiteness of Graph Wreath Products

The Main Theorem

(Needham, 2025) For groups Γ, Δ a graph G = (V, E) on which Γ acts, $G(\Delta) \rtimes \Gamma$ is residually finite if and only if

- \bullet Γ, Δ are residually finite;
- ② Either Δ is abelian and for all neighbouring $v, w \in V$ there is a finite index subgroup $K \leq \Gamma$ such that $w \notin Kv$, or for all v there is some finite index subgroup $K \leq \Gamma$ such that $Kv \cap N(v) = \emptyset$;
- **③** for all v, w ∈ X not neighbouring and not equal there is a finite index K ≤ Γ such that $Kw ∩ (N(v) ∪ \{v\}) = \emptyset$.

Residual Finiteness of Graph Wreath Products

The Main Theorem

(Needham, 2025) For groups Γ, Δ a graph G = (V, E) on which Γ acts, $G(\Delta) \rtimes \Gamma$ is residually finite if and only if

- \bullet Γ, Δ are residually finite;
- ② Either Δ is abelian and for all neighbouring $v, w \in V$ there is a finite index subgroup $K \leq \Gamma$ such that $w \notin Kv$, or for all v there is some finite index subgroup $K \leq \Gamma$ such that $Kv \cap N(v) = \emptyset$;
- **③** for all $v, w \in X$ not neighbouring and not equal there is a finite index $K \leq \Gamma$ such that $Kw \cap (N(v) \cup \{v\}) = \emptyset$.

Remark

The forwards direction is largely unenlightening

Table of Contents

Residual Finiteness

2 Products of Residually Finite Groups

Proof of Backwards Direction

Resolution of the Finite Graph Case

Proposition

If some finite index subgroup of a group is residually finite, then the group itself is

Resolution of the Finite Graph Case

Proposition

If some finite index subgroup of a group is residually finite, then the group itself is

Proposition

If G is a finite graph, and Δ, Γ are residually finite, then $G(\Delta) \rtimes \Gamma$ is residually finite

Resolution of the Finite Graph Case

Proposition

If some finite index subgroup of a group is residually finite, then the group itself is

Proposition

If G is a finite graph, and Δ, Γ are residually finite, then $G(\Delta) \rtimes \Gamma$ is residually finite

Remark

So it suffices to reduce the general case to the finite case

Reduction to the Finite Graph Case

We fix a non-trivial element $(w,g) \in G(\Delta) \rtimes \Gamma$. We assume $w \neq e$

Proposition

For any normal subgroup K of $G(\Delta) \rtimes \Gamma$, there is a homomorphism $G(\Delta) \rtimes \Gamma \to (K \setminus G)(\Delta) \rtimes (\Gamma/K)$ which maps w to something non-trivial if its support is an induced subgraph of $K \setminus G$

Proposition

Conditions (2) and (3) of the main theorem ensure we may choose K so that any finite induced subgraph of G is an induced subgraph of $K \setminus G$