Hilbert distortion of the stochastic diamond graph

Ivan Vojvodić

supervised by Jason Miller

13 October 2025

Outline

1 Distortion

- 2 The stochastic diamond graph
- 3 Main result

Expansion and contraction

Expansion of an embedding

Given metric spaces $(X, d_X), (Y, d_Y)$ and an embedding (injective function) $f: X \hookrightarrow Y$, the *expansion of f* is defined as

$$e(f) := \sup_{u,v \in X, u \neq v} \frac{d_Y(f(u), f(v))}{d_X(u, v)}$$

Expansion and contraction

Expansion of an embedding

Given metric spaces $(X, d_X), (Y, d_Y)$ and an embedding (injective function) $f: X \hookrightarrow Y$, the *expansion of f* is defined as

$$e(f) := \sup_{u,v \in X, u \neq v} \frac{d_Y(f(u), f(v))}{d_X(u, v)}$$

Contraction of an embedding

Given metric spaces $(X, d_X), (Y, d_Y)$ and an embedding $f: X \hookrightarrow Y$, the *contraction of f* is defined as

$$c(f) := \sup_{u,v \in X, u \neq v} \frac{d_X(u,v)}{d_Y(f(u),f(v))}$$

Distortion

Distortion of an embedding

Given metric spaces $(X, d_X), (Y, d_Y)$ and an embedding $f: X \hookrightarrow Y$, the distortion of f is defined as

$$D(f) = c(f) \cdot e(f)$$

Distortion

Distortion of an embedding

Given metric spaces $(X, d_X), (Y, d_Y)$ and an embedding $f: X \hookrightarrow Y$, the distortion of f is defined as

$$D(f) = c(f) \cdot e(f)$$

Distortion

Given metric spaces $(X, d_X), (Y, d_Y)$ the distortion of X in Y is defined as

$$c_Y(X) := \inf_{f : X \hookrightarrow Y} D(f)$$

Distortion

Distortion of an embedding

Given metric spaces $(X, d_X), (Y, d_Y)$ and an embedding $f: X \hookrightarrow Y$, the distortion of f is defined as

$$D(f) = c(f) \cdot e(f)$$

Distortion

Given metric spaces $(X, d_X), (Y, d_Y)$ the distortion of X in Y is defined as

$$c_Y(X) := \inf_{f: X \hookrightarrow Y} D(f)$$

■ When $Y = \ell_2$, we write $c_2(X)$ for $c_{\ell_2}(X)$.

Rao's Theorem

Graph as a metric space

Any (weighted) graph G can be viewed as a metric space using the shortest path metric.

Rao's Theorem

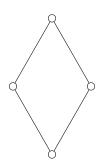
Graph as a metric space

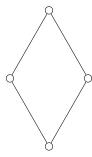
Any (weighted) graph G can be viewed as a metric space using the shortest path metric.

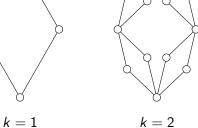
Theorem 1 (Rao)

Any (weighted) planar graph G on n vertices embeds into Euclidean space with $O\left(\sqrt{\log n}\right)$ distortion. Using the notation from before,

$$c_2(G) = O\left(\sqrt{\log n}\right)$$







Theorem 2 (Newman and Rabinovich)

The Diamond graph D_k embeds in Euclidean space with $\Omega\left(\sqrt{k}\right)$ distortion.

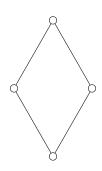
Theorem 2 (Newman and Rabinovich)

The Diamond graph D_k embeds in Euclidean space with $\Omega\left(\sqrt{k}\right)$ distortion.

■ Since $n = |V(D_k)|$ is exponential in k, this attains Rao's upper bound.

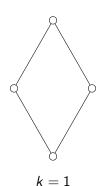
The Stochastic Diamond Graph $D_{k,p}$

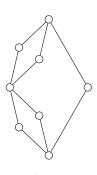
The Stochastic Diamond Graph $D_{k,p}$



$$k = 1$$

The Stochastic Diamond Graph $D_{k,p}$





The main question

Question

For a fixed $p \in (0,1)$, how does the distortion $c_2(D_{k,p})$ grow as $k \to \infty$?

The main question

Question

For a fixed $p \in (0,1)$, how does the distortion $c_2(D_{k,p})$ grow as $k \to \infty$?

■ For $p \le 1/4$, the graph is finite almost surely, and thus embeds with O(1) distortion.

An easy lower bound

• One can show that $D_{k,p}$ will contain a copy of $D_{\Omega(\log k)}$ with a fixed positive probability.

An easy lower bound

- One can show that $D_{k,p}$ will contain a copy of $D_{\Omega(\log k)}$ with a fixed positive probability.
- This shows that $c_2(D_{k,p}) = \Omega\left(\sqrt{\log k}\right)$, conditioned on nonextinction.

Main result

Theorem

Let $p_c = \sqrt{27/32}$. Conditioned on nonextinction, we have the following:

- If $1/4 , then the distortion grows as <math>\sqrt{\log k}$.
- If $p_c , then the distortion grows as <math>\sqrt{k}$.

Main result

Thank you!