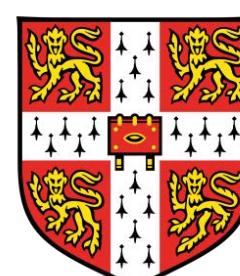


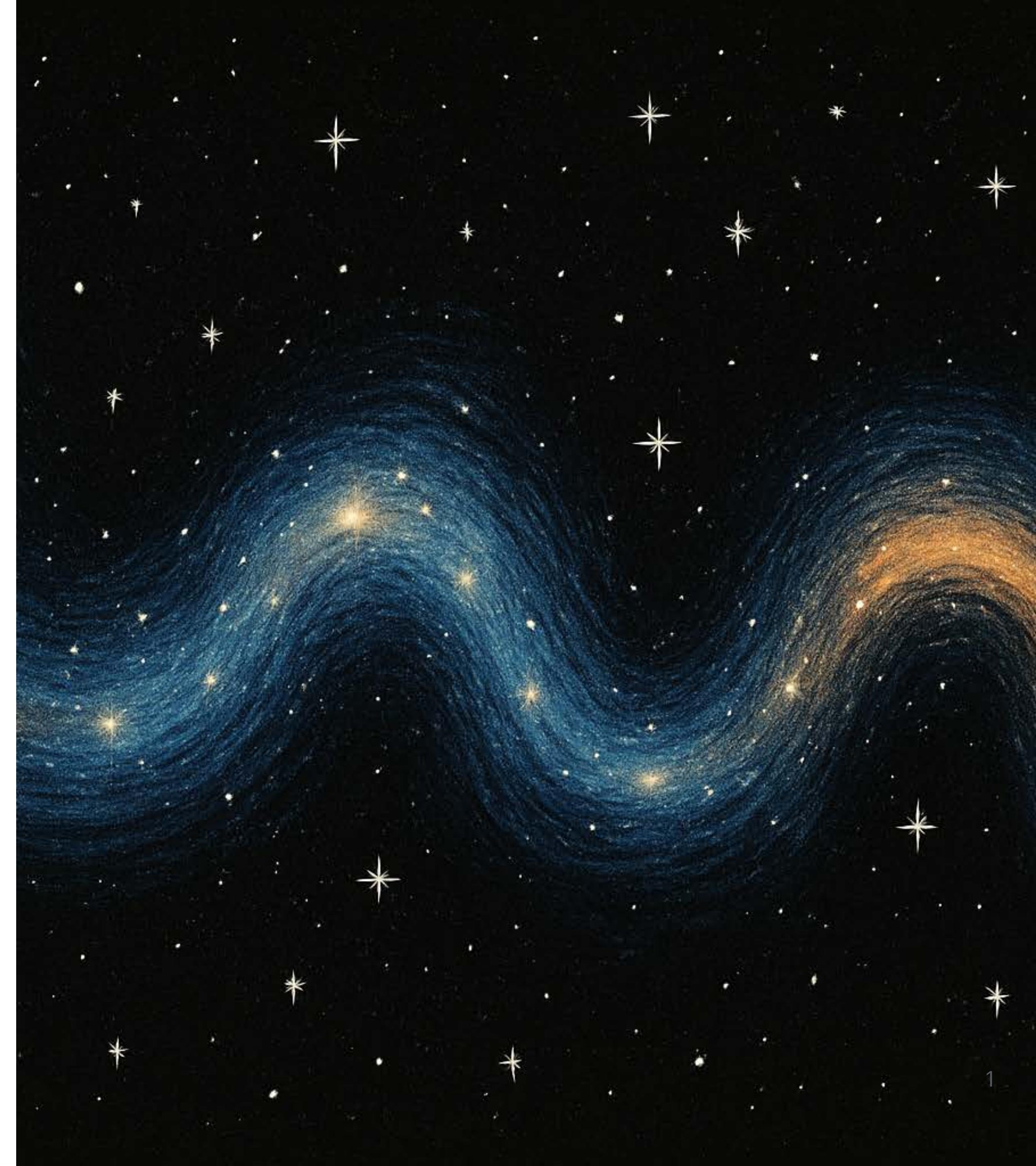
Nested Sampling for ARIMA Model Selection : A Novel Approach to Astronomical Time Series Analysis

Cambridge Mathematics Placement 2025

Ajinkya J. Naik
Supervisor : Dr. Will Handley

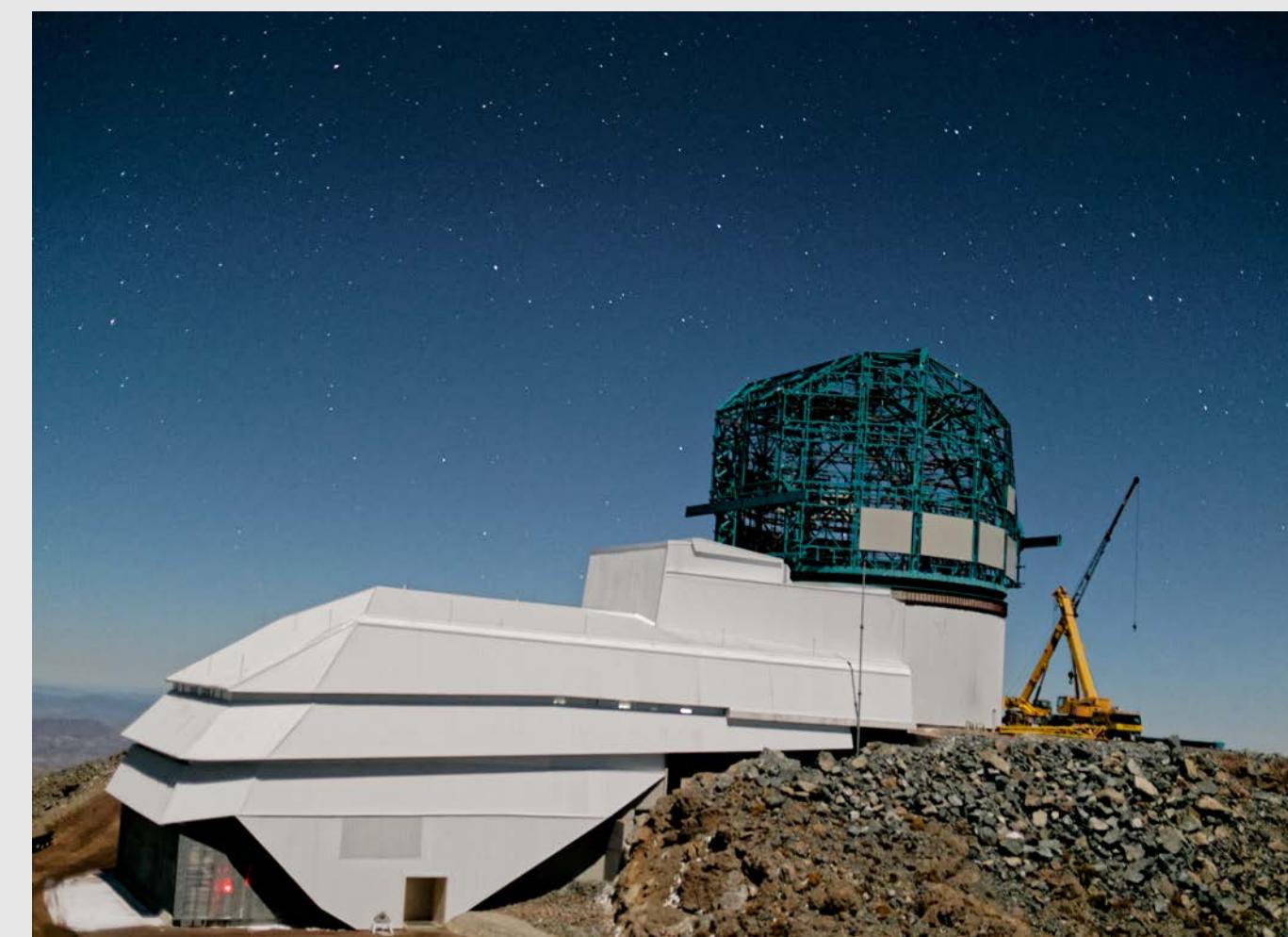


UNIVERSITY OF
CAMBRIDGE

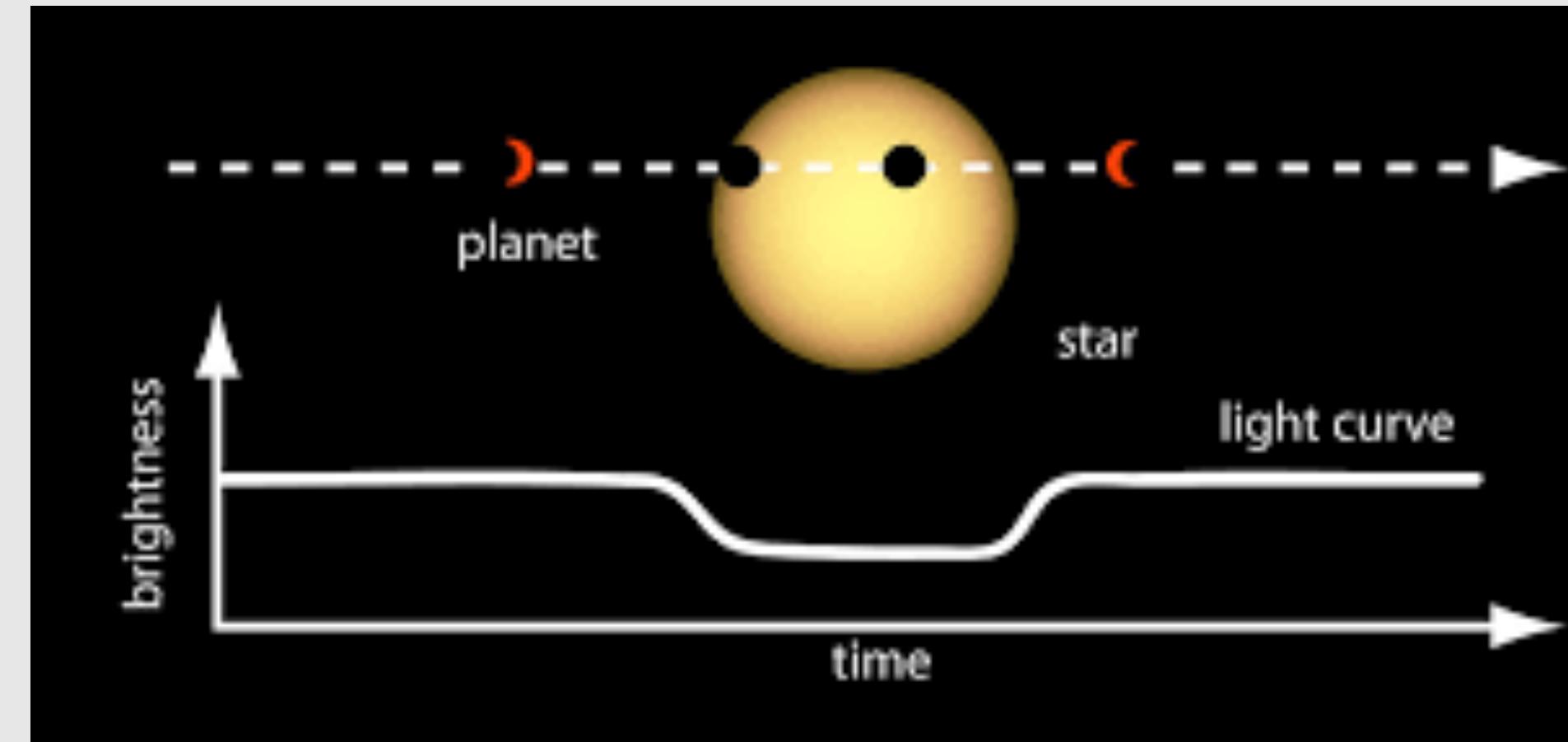
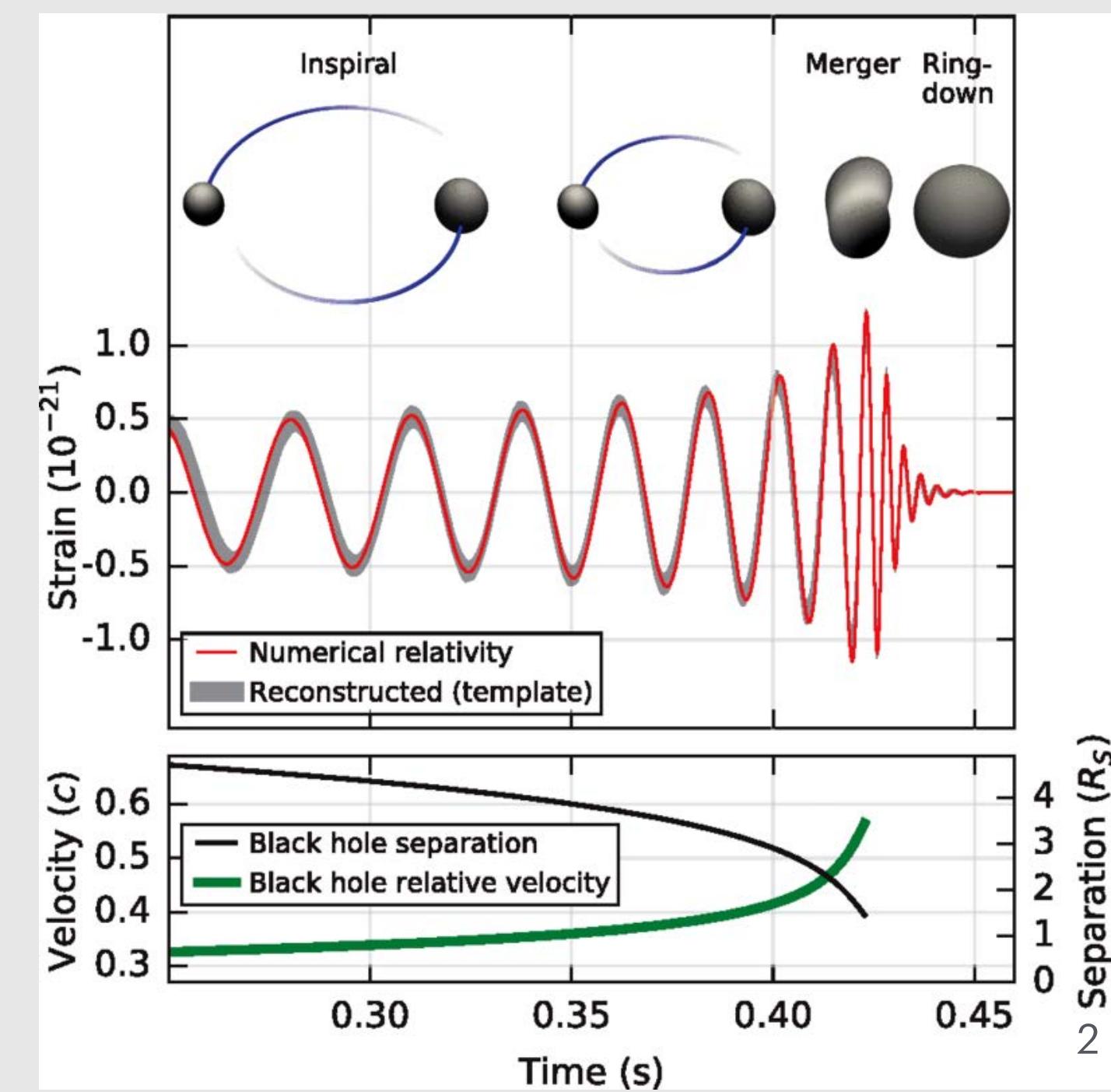


Introduction

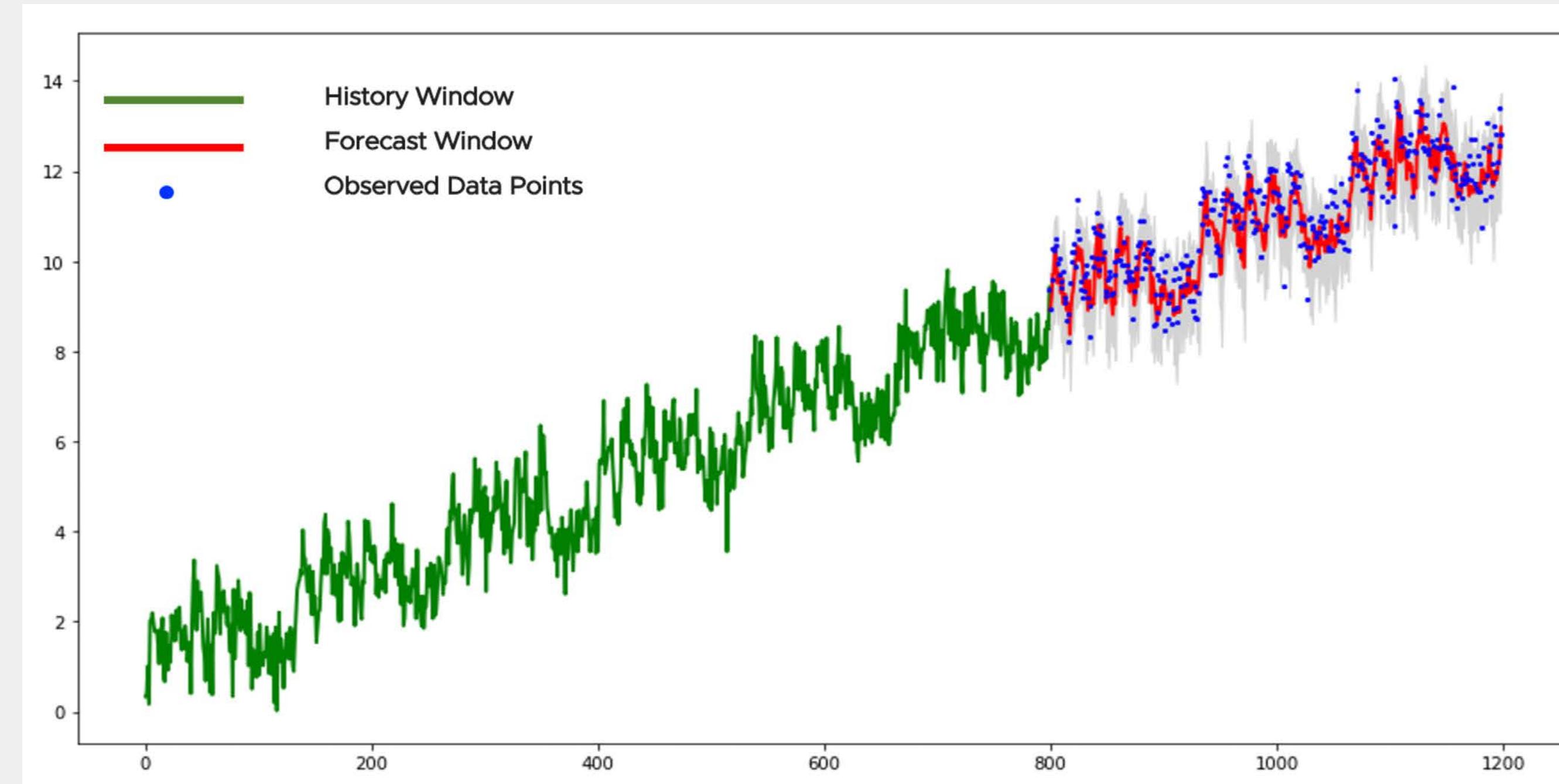
- The era of time-domain astronomy.
- Common analysis methods : gaussian processes, polynomial models, machine learning etc.



Large Synoptic Survey Telescope (LSST)



ARIMA models

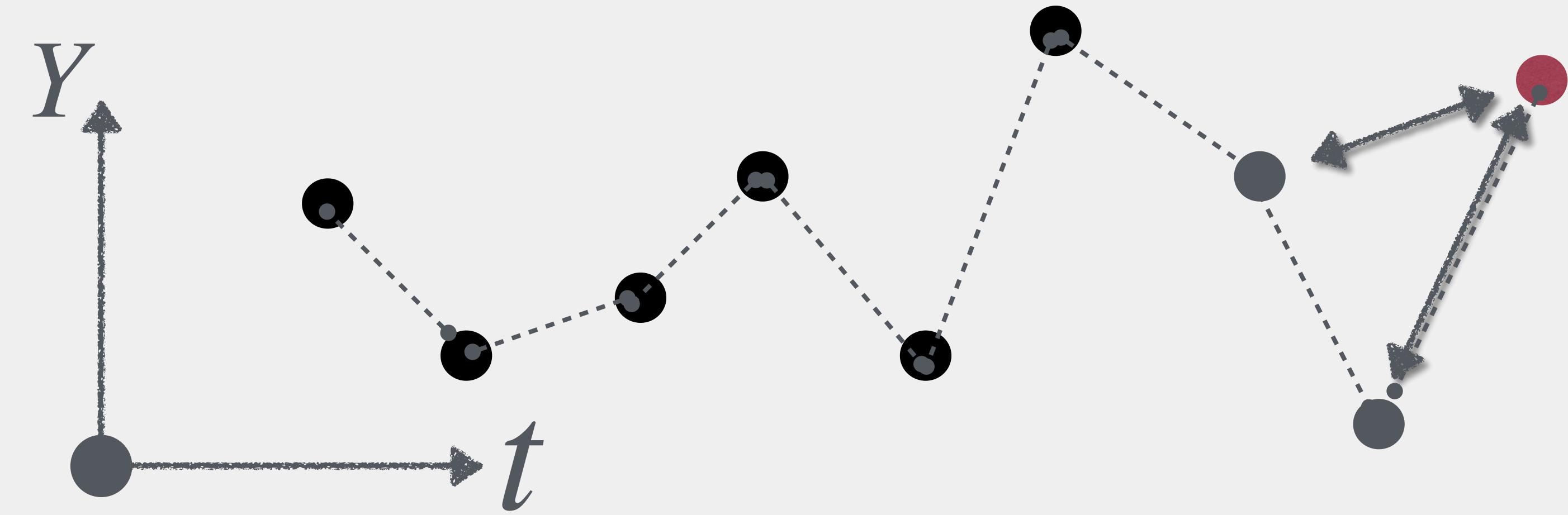


- Analysing and forecasting points \hat{y}_t for a given time series y_t
- **Autoregressive (AR), Integrated (I), Moving Average (MA)**

What are ARIMA Models?

Autoregressive AR(p) :

- Modelling “autocorrelation” in time series.
- Each datapoint correlated with its own previous (or “lagged”) values.
- For example : Daily average temperature

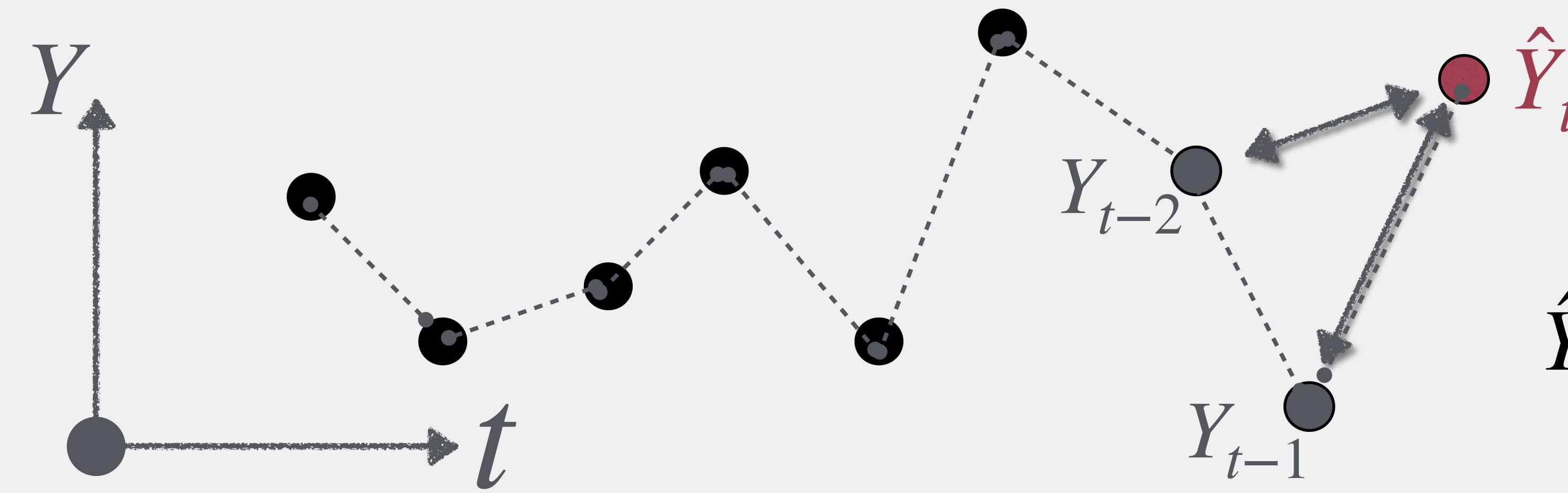


What are ARIMA Models?

Autoregressive AR(**p**) :

- Introduced in 1927, by Yule to model sunspot numbers.
- **p** denotes number of lagged terms.
- For example p=2 :

Udny Yule



$$\hat{Y}_t = \mu + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \epsilon_t$$

What are ARIMA Models?

Moving Average MA(q) :

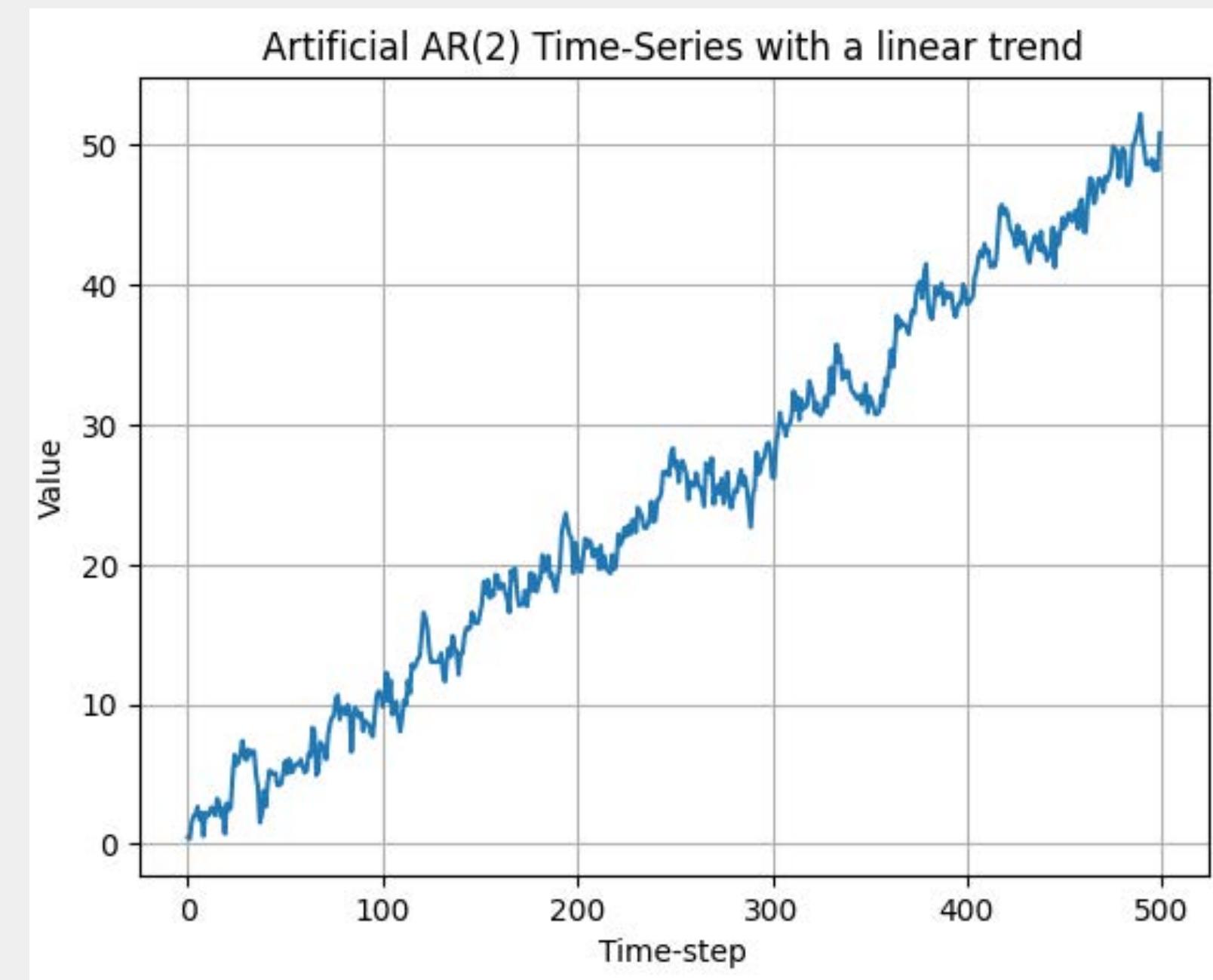
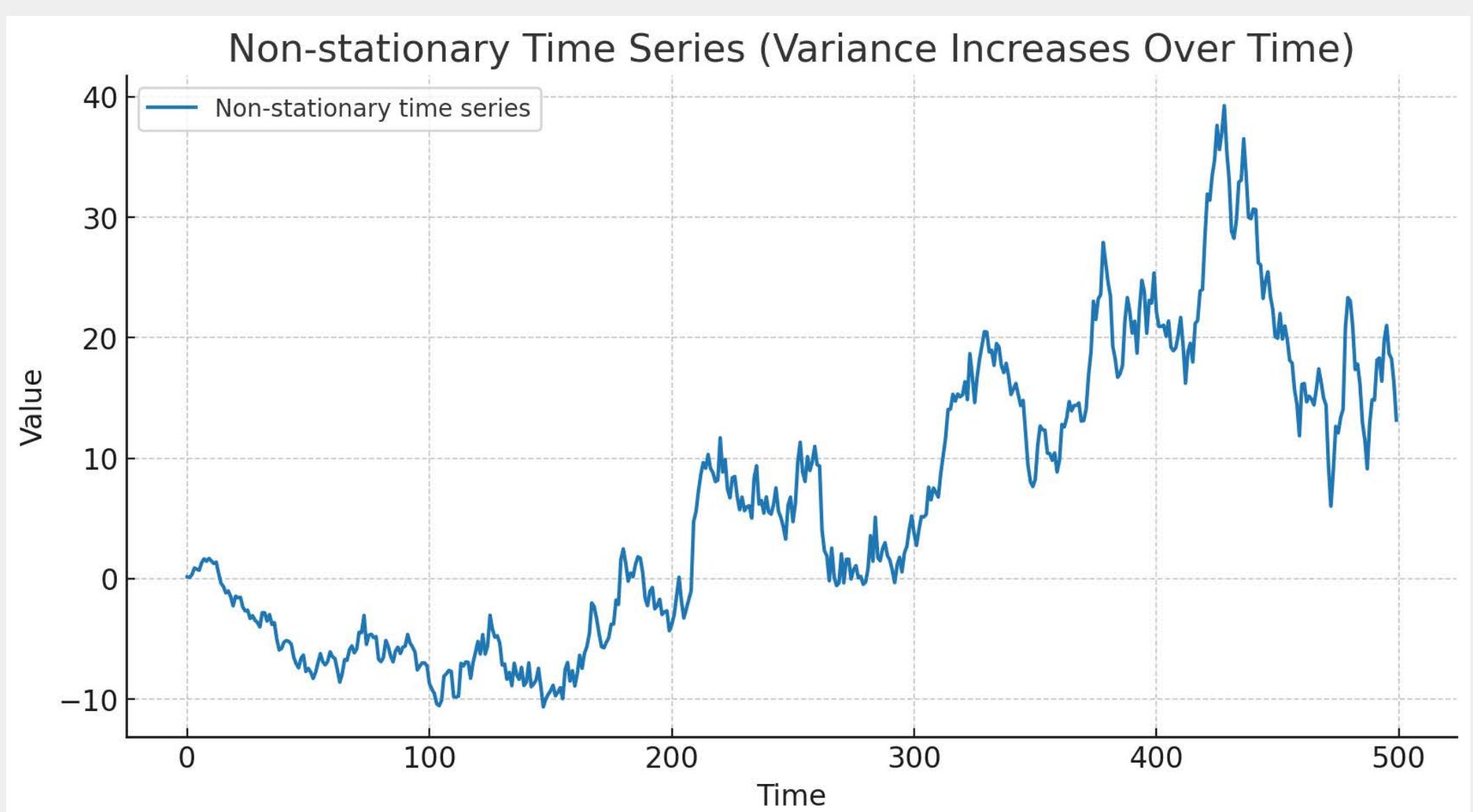
- Similar to **AR** models but present points correlated with lagged forecast errors (residuals).
- q—> number of lagged forecast errors. For example, MA(2) model :

$$\hat{y}_t = \mu + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \epsilon_t$$

What are ARIMA Models?

Integrated I (d) :

- ARMA modelling requires a stationary time series i.e. constant mean and variance.
- Integrated (I) part of ARIMA takes care of this by de-trending the time series using finite differencing.
- $d \rightarrow$ Order of differencing



What are ARIMA Models?

ARIMA (p, d, q):

- Combined into **ARIMA (p, d, q)** by Box and Jenkins in 1971.
- Used widely in economics, finance and weather/climate predictions.
- Not so common in Astronomy

$$\hat{y}_t = \mu + \phi_p y_{t-p} + \theta_q \epsilon_{t-q} + \epsilon_t$$

What are ARIMA Models?

ARIMA (p , d , q):

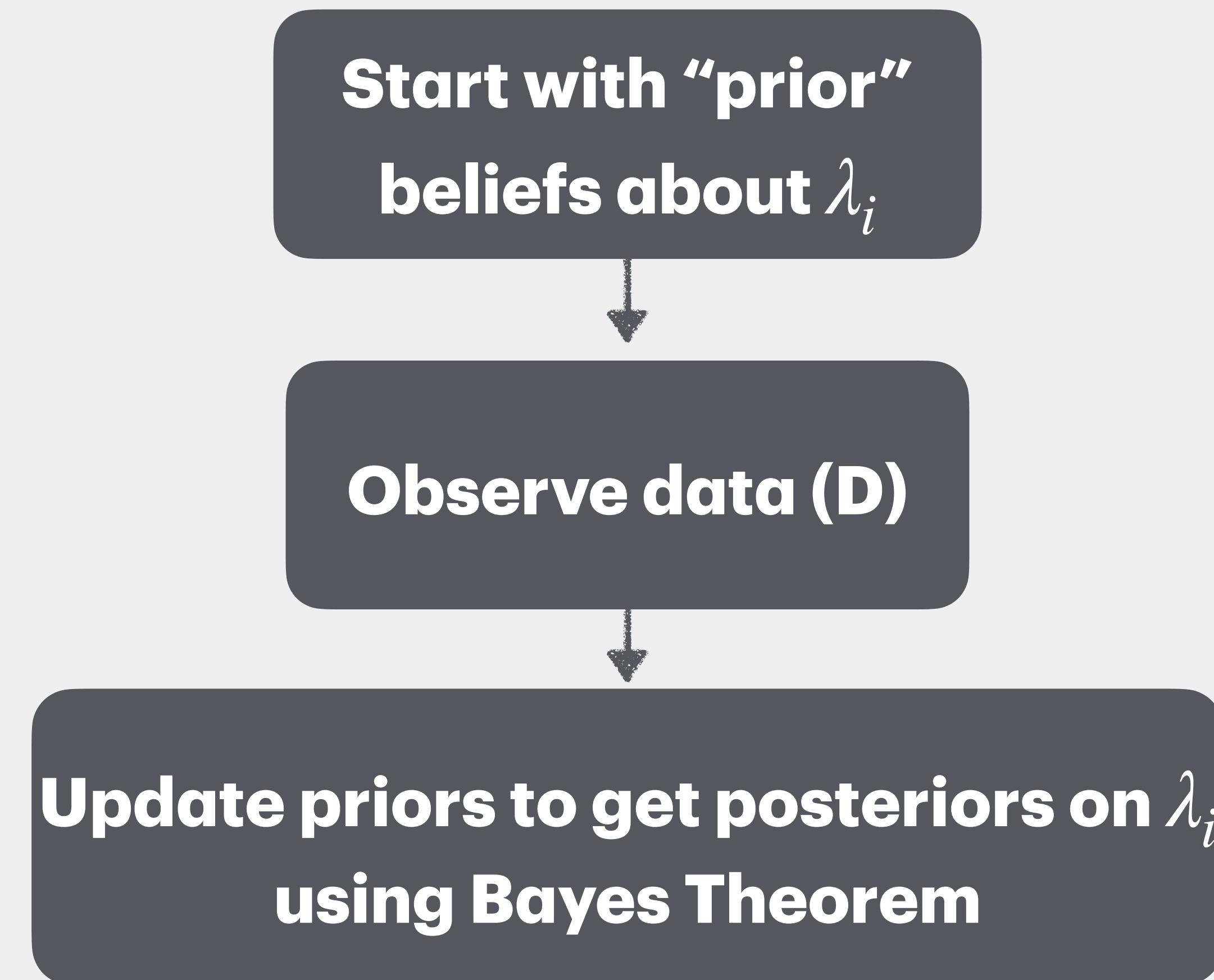
- p , d and q could be any positive integers.
- Difficult to select the right (p , d , q) order for fitting data.
- ARIMA models are over-parameterised, always a risk of overfitting.
- Need a method to choose the correct ARIMA Model for any given data.

$$\hat{y}_t = \mu + \phi_p y_{t-p} + \theta_q \epsilon_{t-q} + \epsilon_t$$

Bayesian Inference and Nested Sampling

A Primer on Bayesian Inference

- Infer the distribution of parameter values λ_i of a model **M** from data **D**.



Bayesian Inference and Nested Sampling

A Primer on Bayesian Inference :

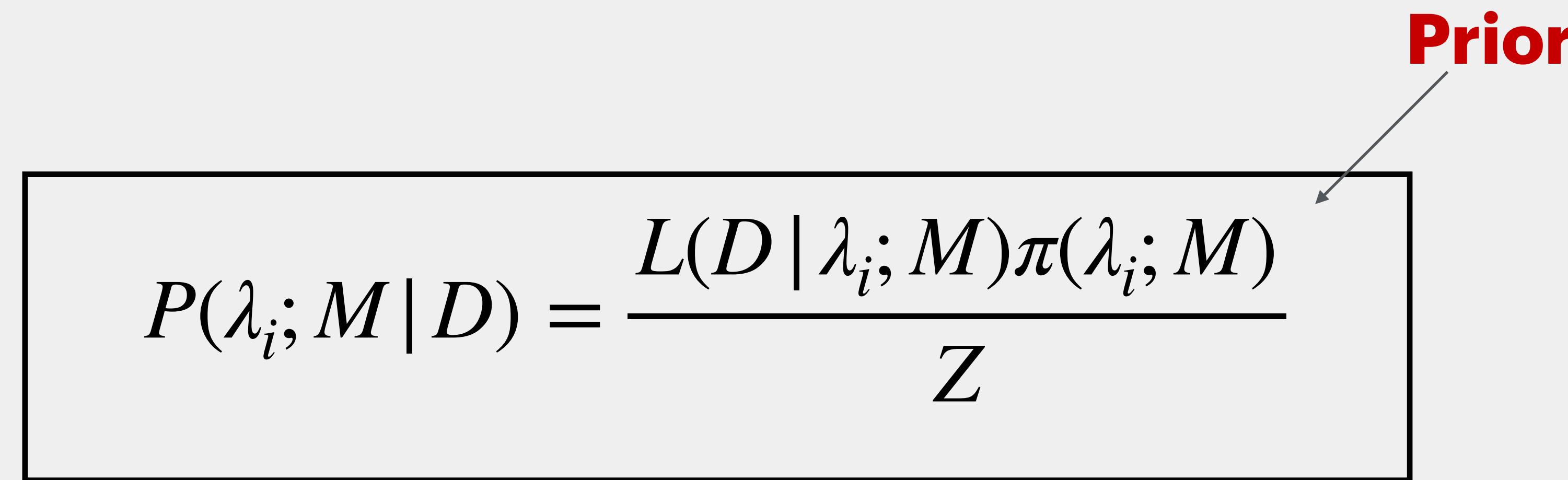
$$P(\lambda_i; M | D) = \frac{L(D | \lambda_i; M) \pi(\lambda_i; M)}{Z}$$

Bayesian Inference and Nested Sampling

A Primer on Bayesian Inference :

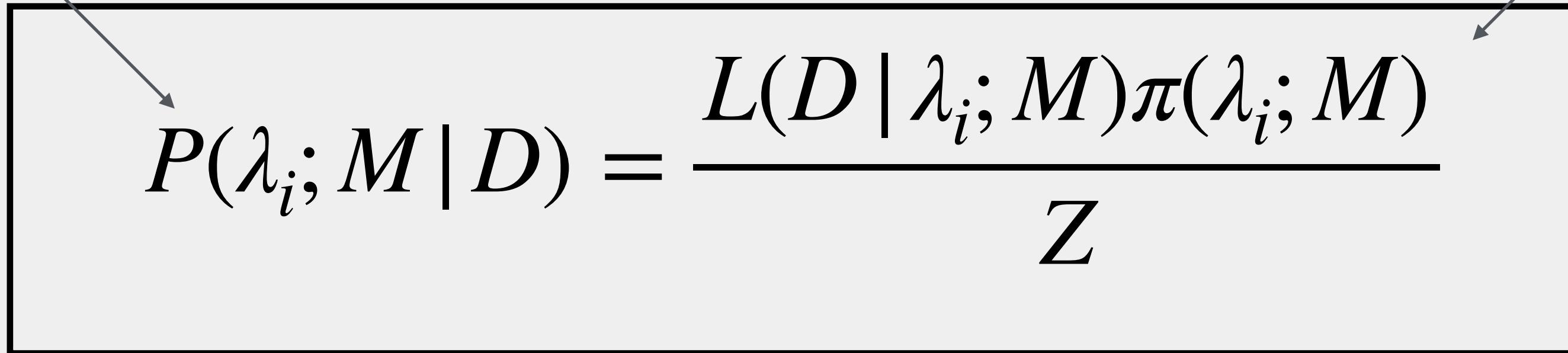
$$P(\lambda_i; M | D) = \frac{L(D | \lambda_i; M) \pi(\lambda_i; M)}{Z}$$

Prior



Bayesian Inference and Nested Sampling

A Primer on Bayesian Inference :



The diagram shows the Bayesian posterior formula $P(\lambda_i; M | D) = \frac{L(D | \lambda_i; M)\pi(\lambda_i; M)}{Z}$ enclosed in a black rectangular box. A green arrow points from the text "Posterior" to the left side of the box. A red arrow points from the text "Prior" to the right side of the box.

$$P(\lambda_i; M | D) = \frac{L(D | \lambda_i; M)\pi(\lambda_i; M)}{Z}$$

Bayesian Inference and Nested Sampling

A Primer on Bayesian Inference :

$$P(\lambda_i; M | D) = \frac{L(D | \lambda_i; M) \pi(\lambda_i; M)}{Z}$$

Diagram illustrating the Bayesian formula:

- Posterior** (green text) is associated with the term $P(\lambda_i; M | D)$.
- Likelihood** (blue text) is associated with the term $L(D | \lambda_i; M)$.
- Prior** (red text) is associated with the term $\pi(\lambda_i; M)$.
- A vertical arrow points from the Likelihood term to the formula.
- Two arrows point from the Prior term to the formula: one from the right side and one from the bottom right corner.

Bayesian Inference and Nested Sampling

A Primer on Bayesian Inference :

$$P(\lambda_i; M | D) = \frac{L(D | \lambda_i; M) \pi(\lambda_i; M)}{Z}$$
$$Z = \int L(D | \lambda_i) \pi(\lambda_i) d\lambda_i$$

Posterior **Likelihood** **Prior**

Bayesian Inference and Nested Sampling

A Primer on Bayesian Inference :

$$P(\lambda_i; M | D) = \frac{L(D | \lambda_i; M) \pi(\lambda_i; M)}{Z}$$

Diagram illustrating the Bayesian formula:

- Posterior** (green) is labeled on the left, with an arrow pointing to the term $P(\lambda_i; M | D)$.
- Likelihood** (blue) is labeled above the formula, with an arrow pointing to the term $L(D | \lambda_i; M)$.
- Prior** (red) is labeled on the right, with an arrow pointing to the term $\pi(\lambda_i; M)$.
- Evidence** (purple) is labeled below the formula, with an arrow pointing to the term Z .

$$\text{Evidence : } Z = \int L(D | \lambda_i) \pi(\lambda_i) d\lambda_i$$

Bayesian Inference and Nested Sampling

A Primer on Bayesian Inference :

$$P(\lambda_i; M | D) = \frac{L(D | \lambda_i; M) \pi(\lambda_i; M)}{Z}$$

Posterior **Likelihood** **Prior**

Evidence : $Z = \int L(D | \lambda_i) \pi(\lambda_i) d\lambda_i$

Useful for model comparison!!

The diagram illustrates the Bayesian posterior formula. A large rectangular box contains the equation $P(\lambda_i; M | D) = \frac{L(D | \lambda_i; M) \pi(\lambda_i; M)}{Z}$. Four arrows point to different parts of the equation: an arrow from the text 'Posterior' points to the term $P(\lambda_i; M | D)$; an arrow from the text 'Likelihood' points to the term $L(D | \lambda_i; M)$; an arrow from the text 'Prior' points to the term $\pi(\lambda_i; M)$; and an arrow from the text 'Evidence' points to the denominator Z .

Bayesian Inference and Nested Sampling

Evidence for Model Comparison

$$Z_n = \int L(D | \lambda_i; M_n) \pi(\lambda_i; M_n) d\lambda_i = P(\mathbf{D} | \mathbf{M}_n)$$

- Model with higher evidence statistically preferred by data.
- But, cumbersome to evaluate due to “curse of dimensionality”.
- Solution → Nested Sampling!

Bayesian Inference and Nested Sampling

The Nested Sampling Algorithm

- Introduced by physicist John Skilling in 2003.
- Key idea is to define the “prior volume” - amount of prior mass contained inside an equal likelihood contour.

$$X(L) = \int_{L>L(\lambda)} \pi(\lambda) d\lambda$$

- Transform the multi-dimensional evidence integral to a simple one-dimensional integral:

$$Z(X) = \int_0^1 L(X) dX$$

ARIMA x Nested Sampling

The Idea

$$\hat{y}_t = \mu + \phi_p y_{t-p} + \theta_q \epsilon_{t-q} + \epsilon_t$$

$$P(\lambda_i; M | D) = \frac{L(D | \lambda_i; M) \pi(\lambda_i; M)}{Z}$$

- Use the weights (ϕ_p, θ_q) and the standard deviation σ characterising ϵ_t as parameters λ_i for Bayesian Inference.
- Nested Sampling serves as an efficient tool : model selection + posterior distributions for parameters.
- Occam's penalty ensures overfitting is avoided.

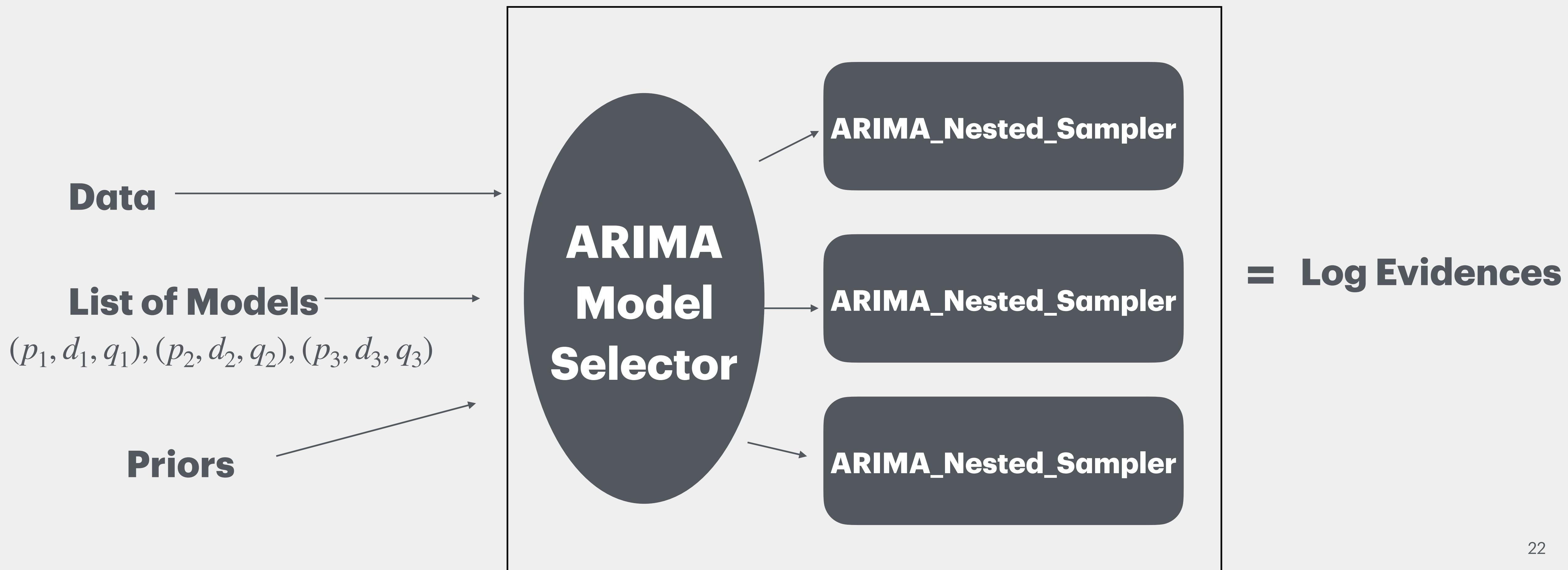
ARIMA x Nested Sampling

The Code

- **BlackJAX** Nested Sampler.
- Leveraging the JAX ecosystem (runtime reduced from 3-4 minutes to just few seconds!)
- Main object : **ARIMA_Nested_Sampler** class

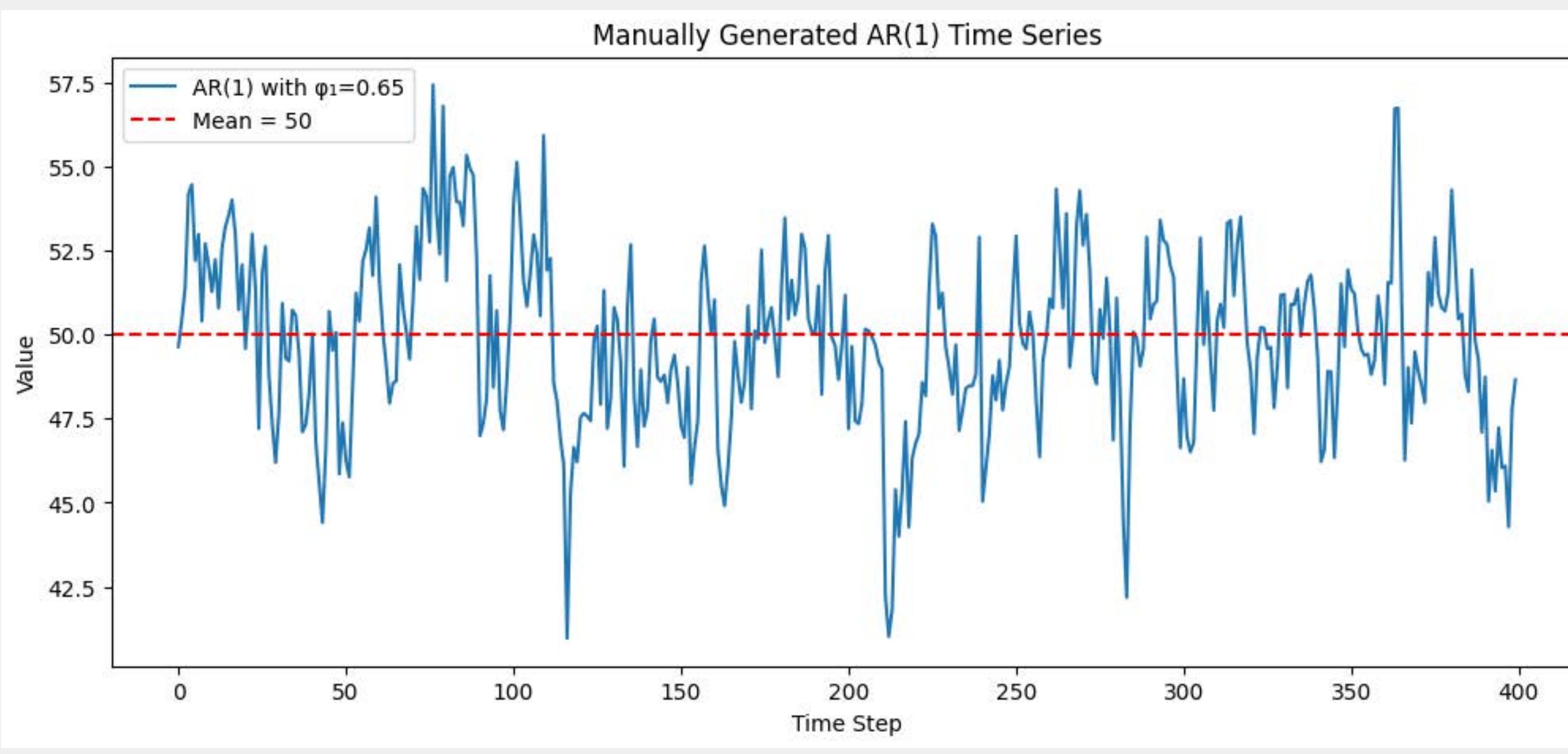
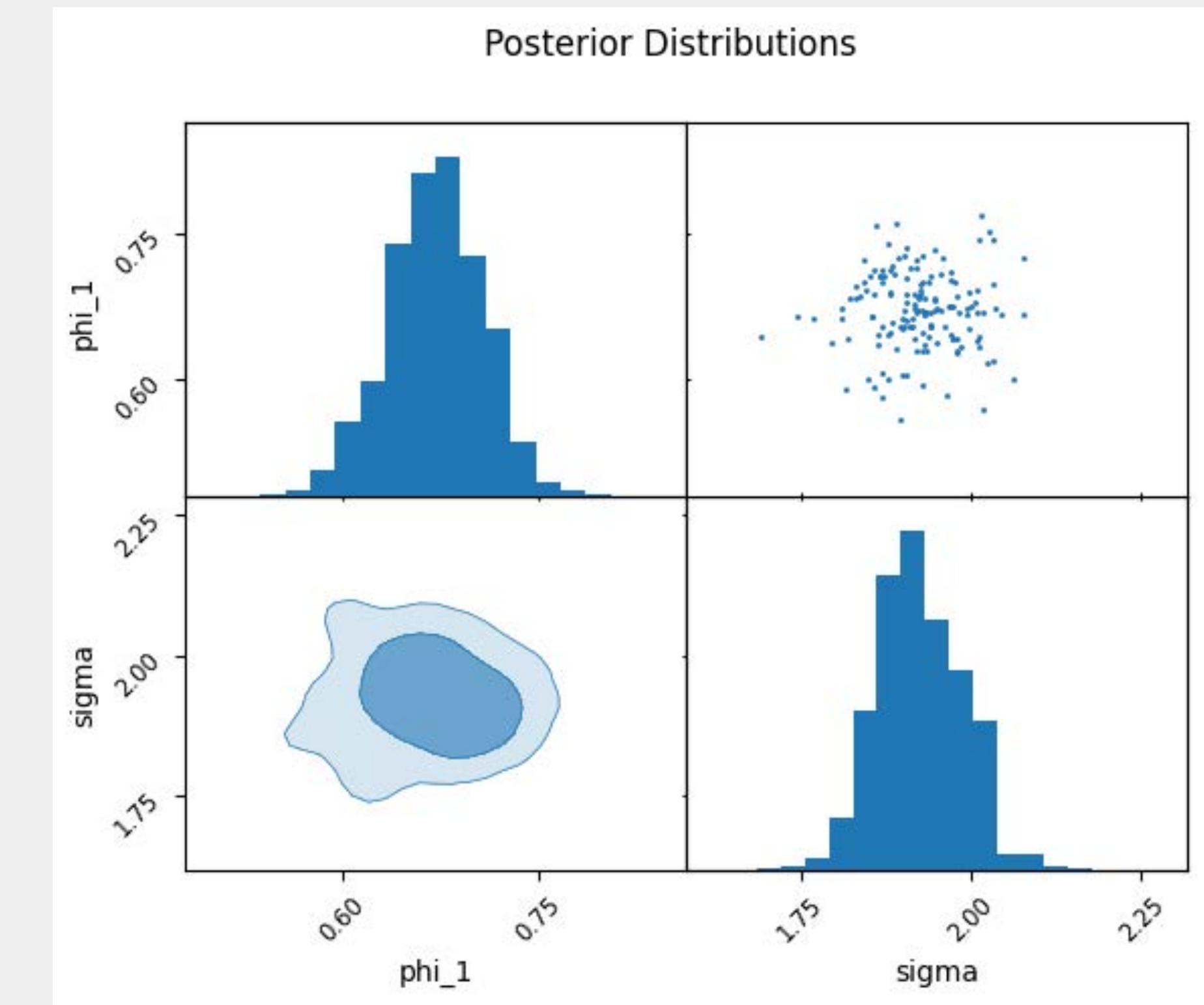
ARIMA x Nested Sampling

Model Comparison



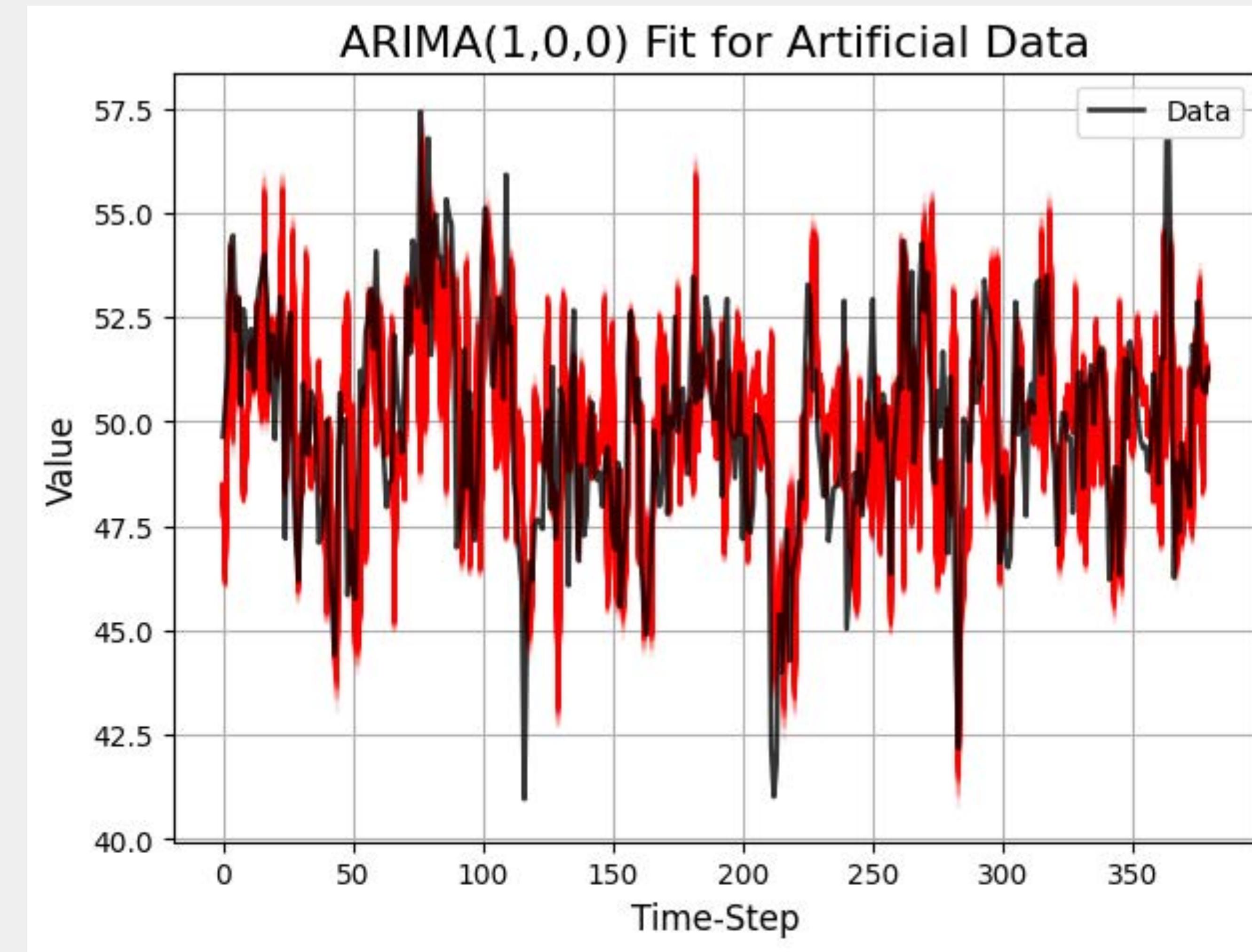
ARIMA x Nested Sampling

Testing on synthetic data



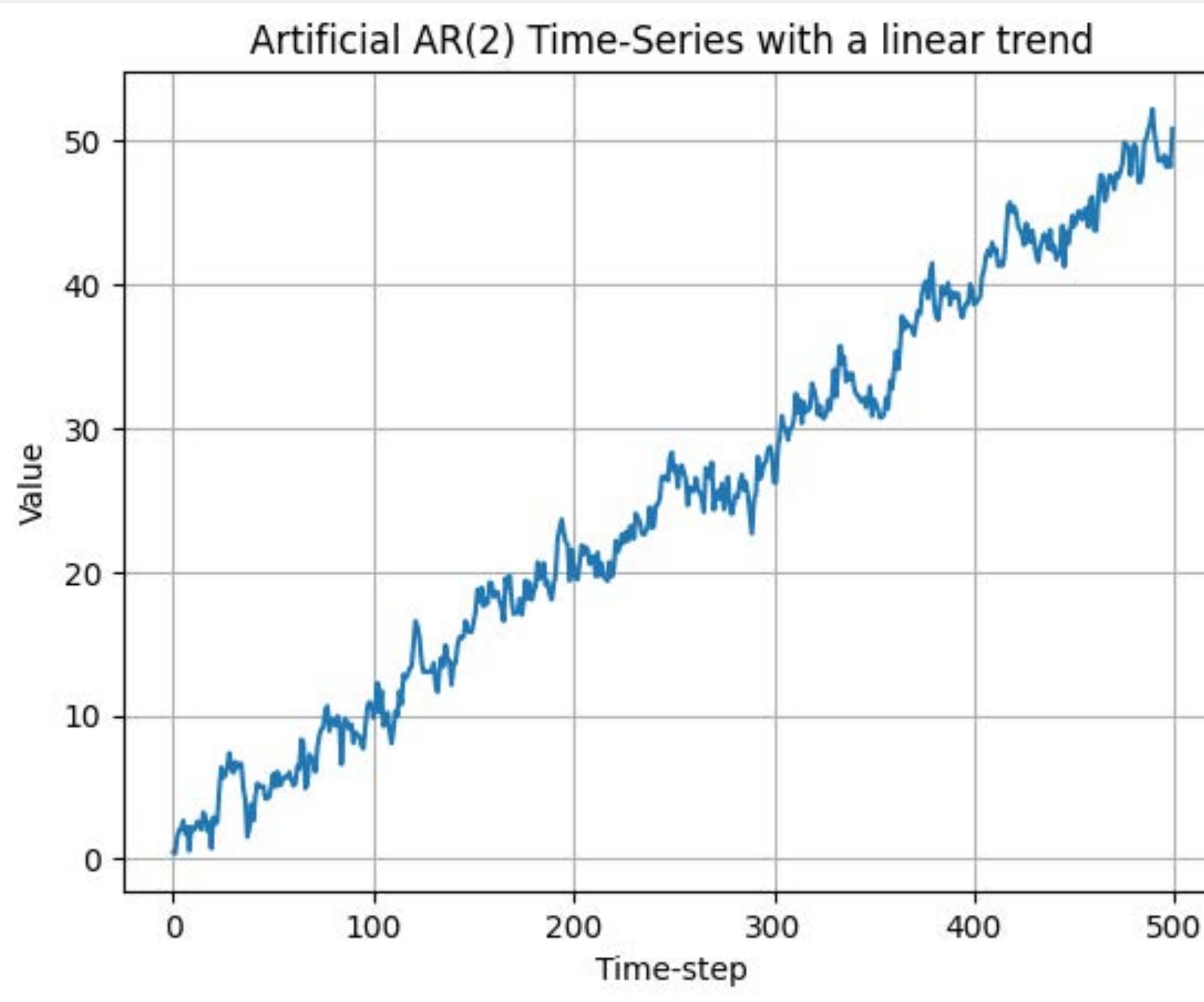
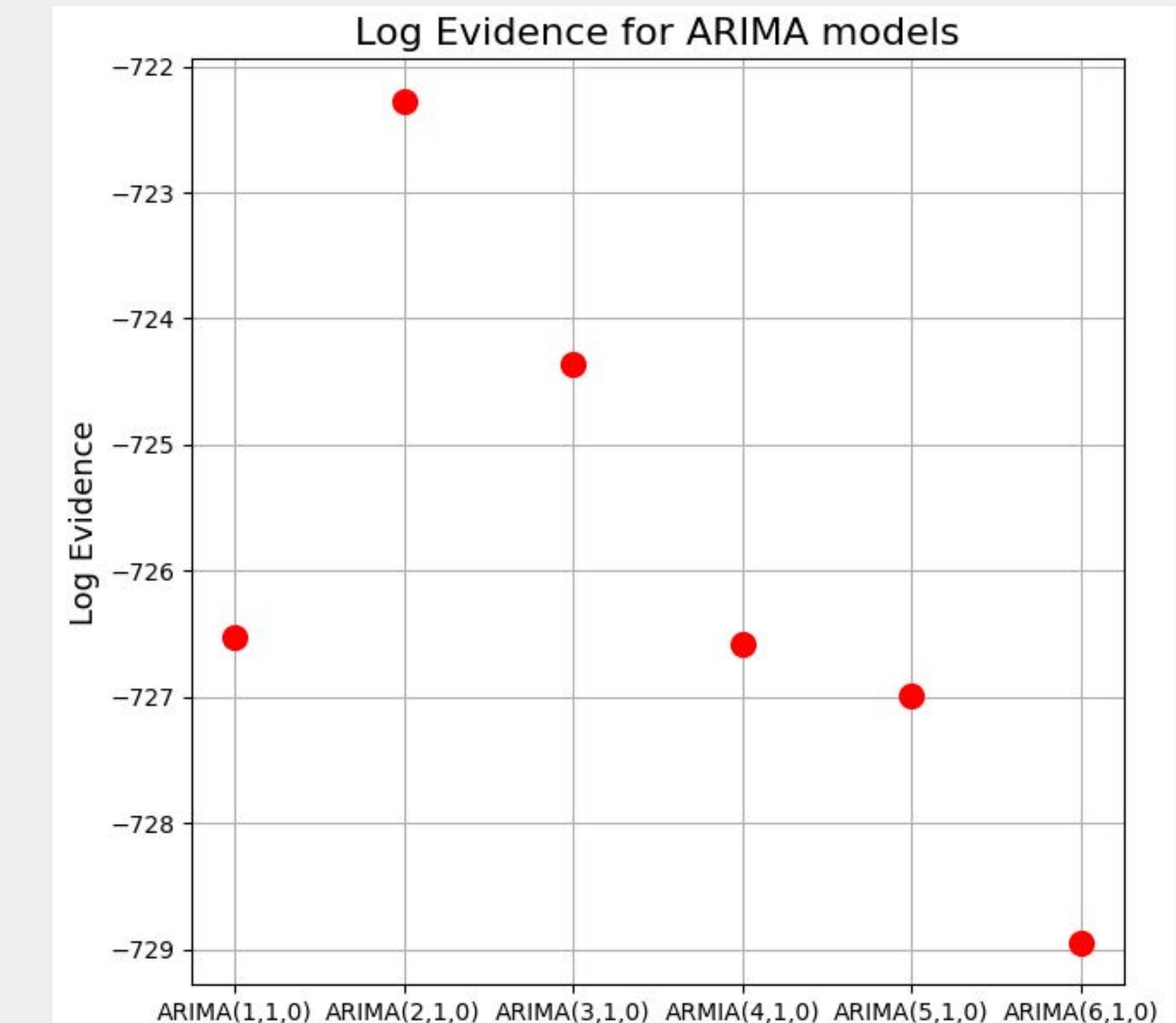
ARIMA x Nested Sampling

Testing on synthetic data



ARIMA x Nested Sampling

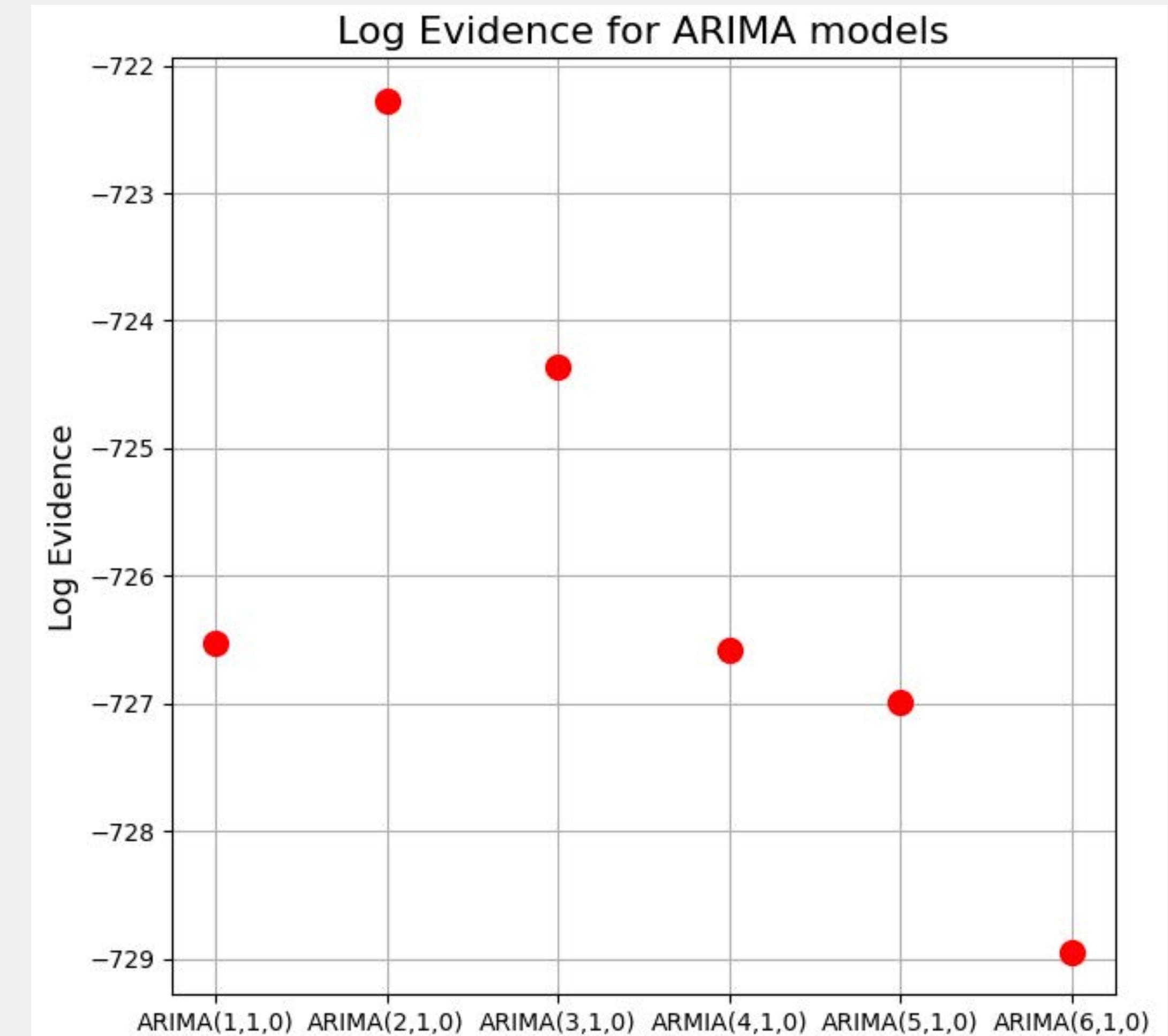
Testing on synthetic data



ARIMA x Nested Sampling

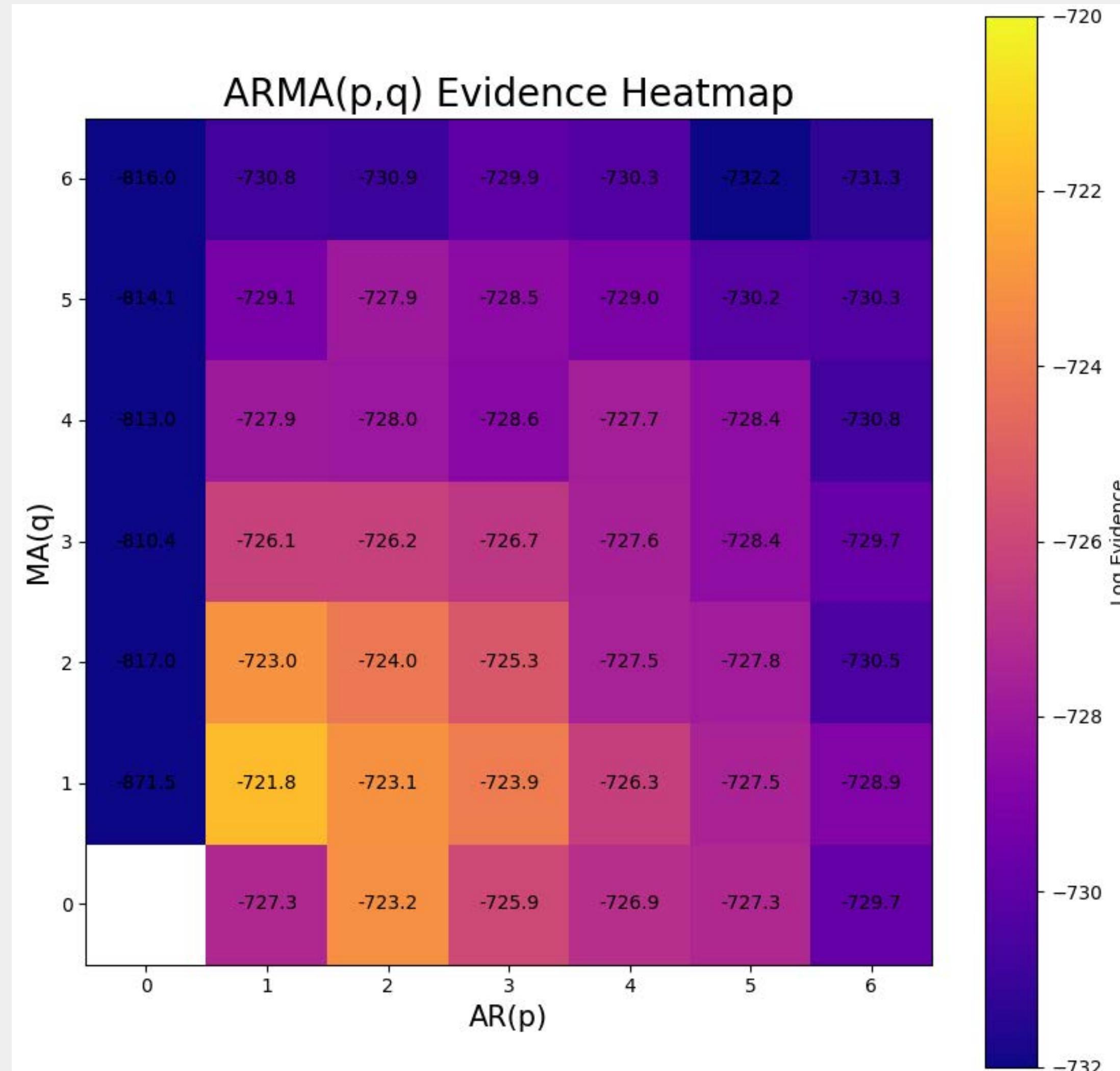
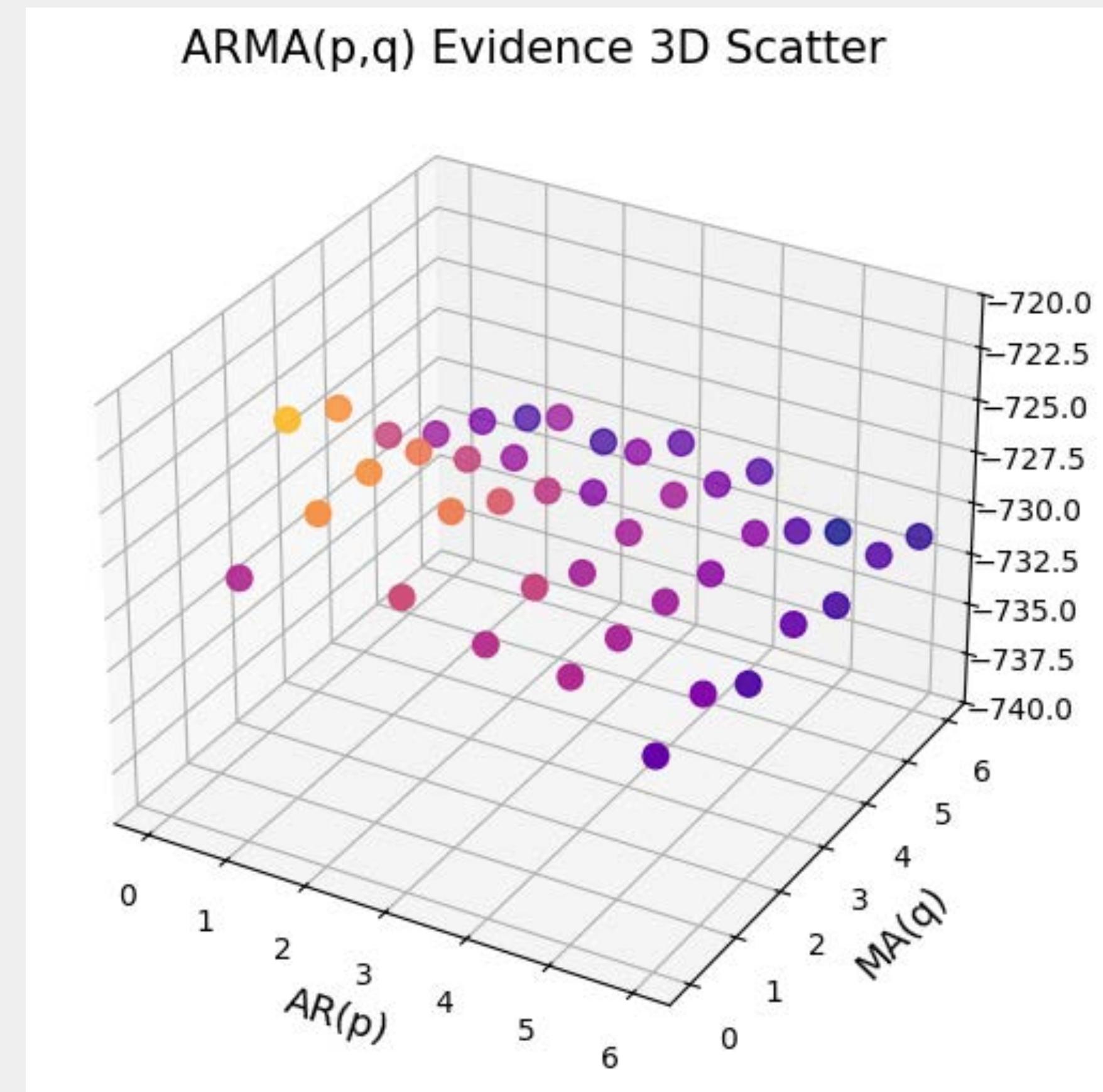
The Occam's Penalty in Action

$$Z = \int L(\theta | D) \pi(\theta) d\theta$$



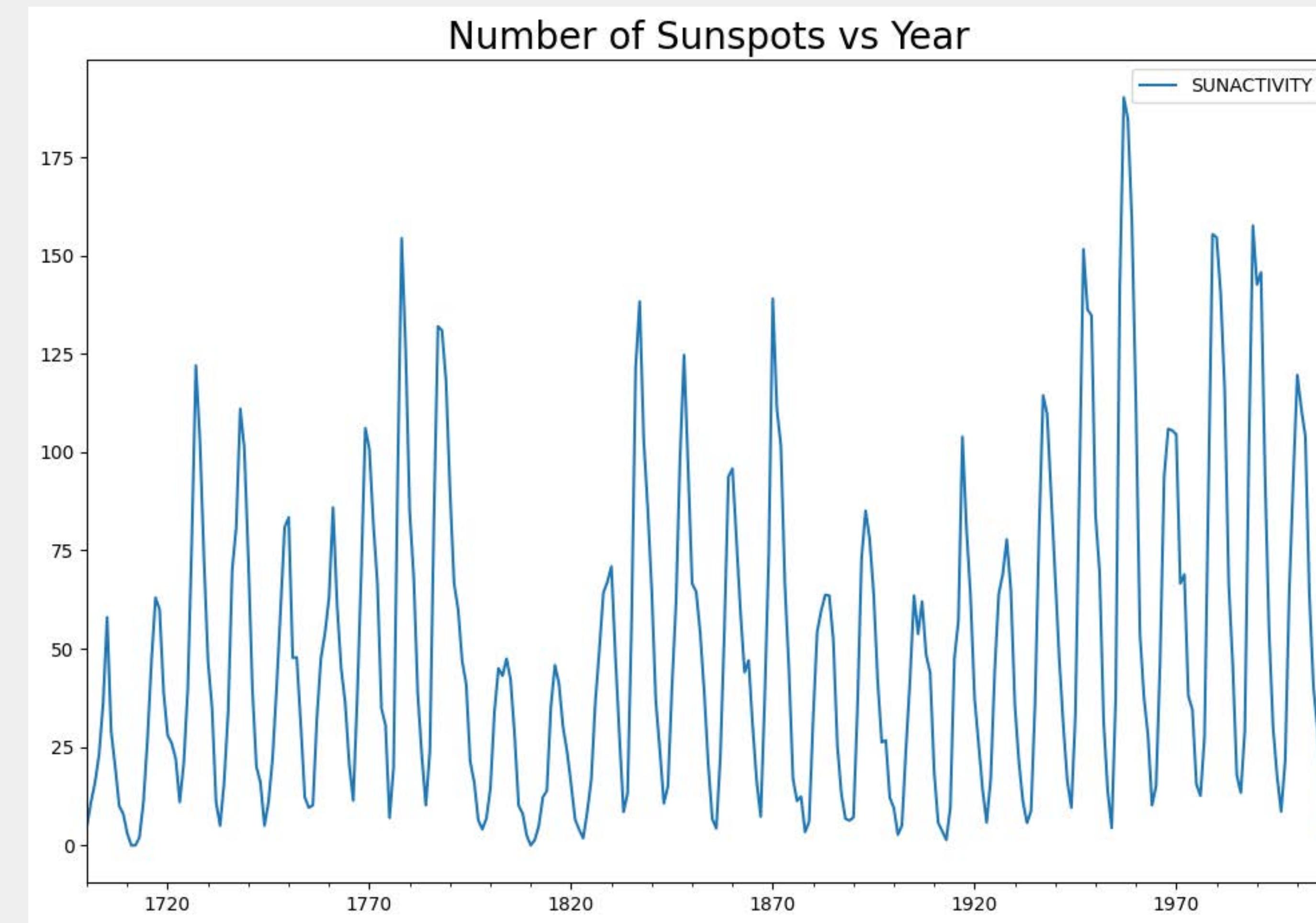
ARIMA x Nested Sampling

Testing on synthetic data



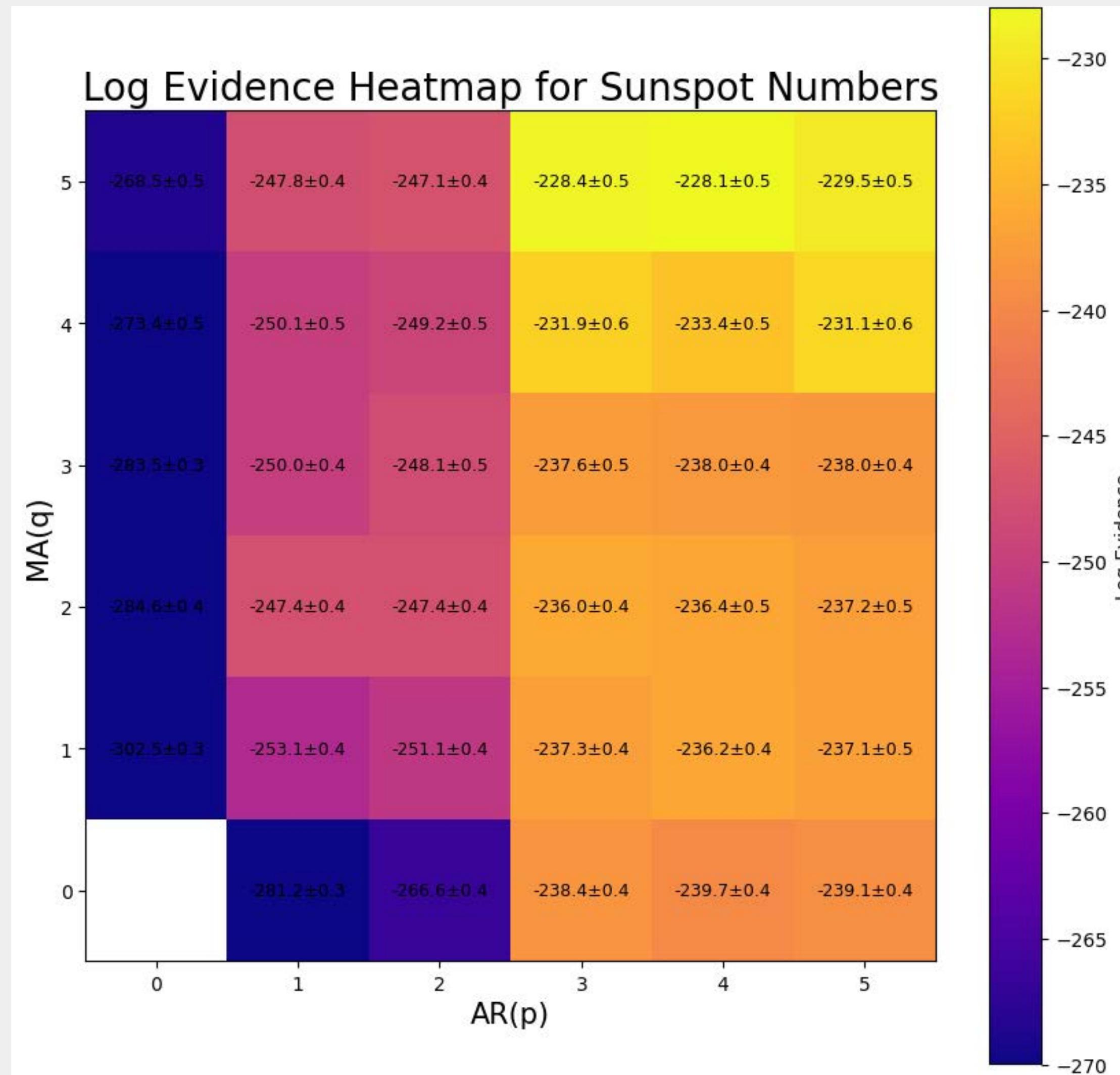
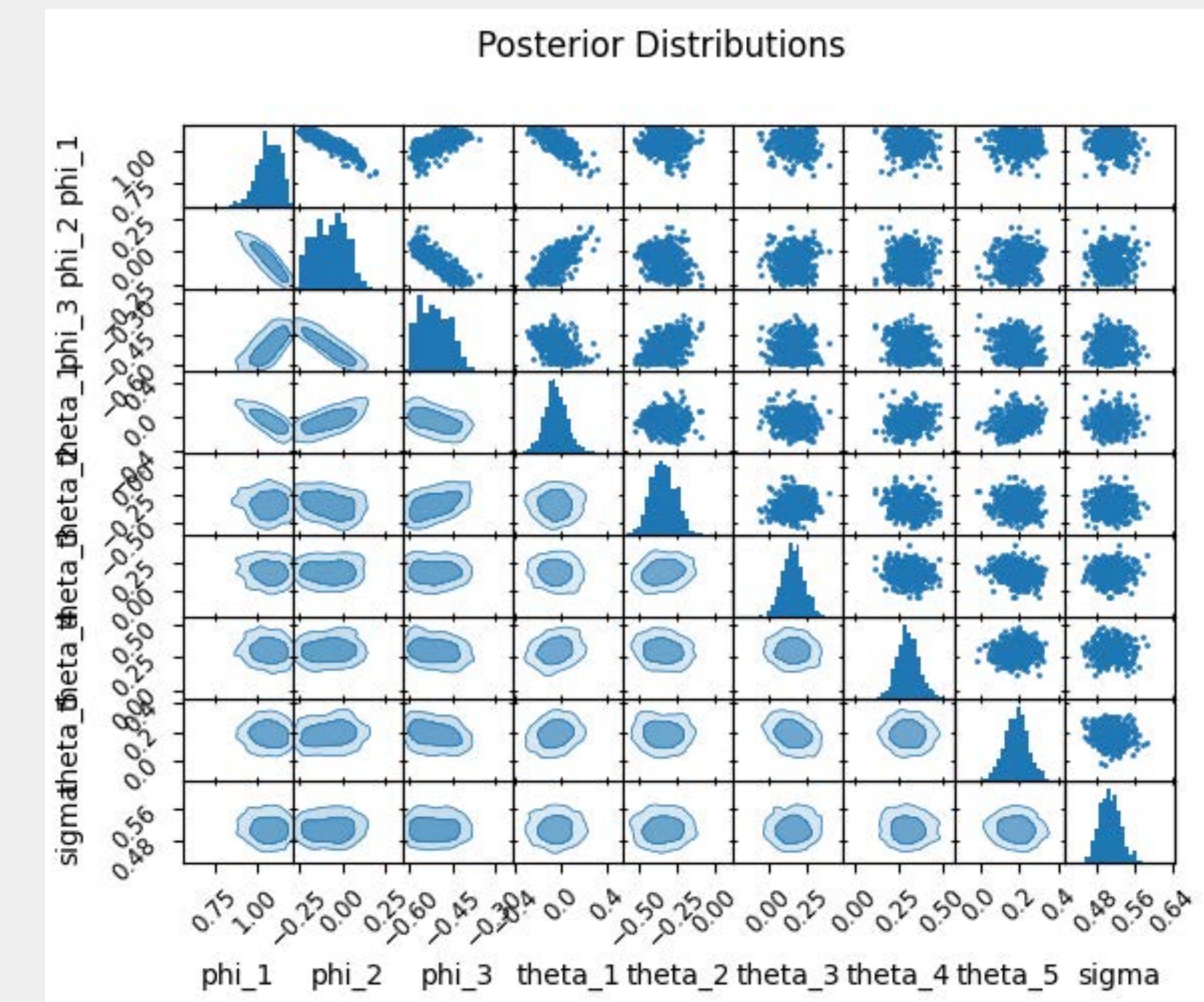
Astronomical Case Study

Sunspot Numbers



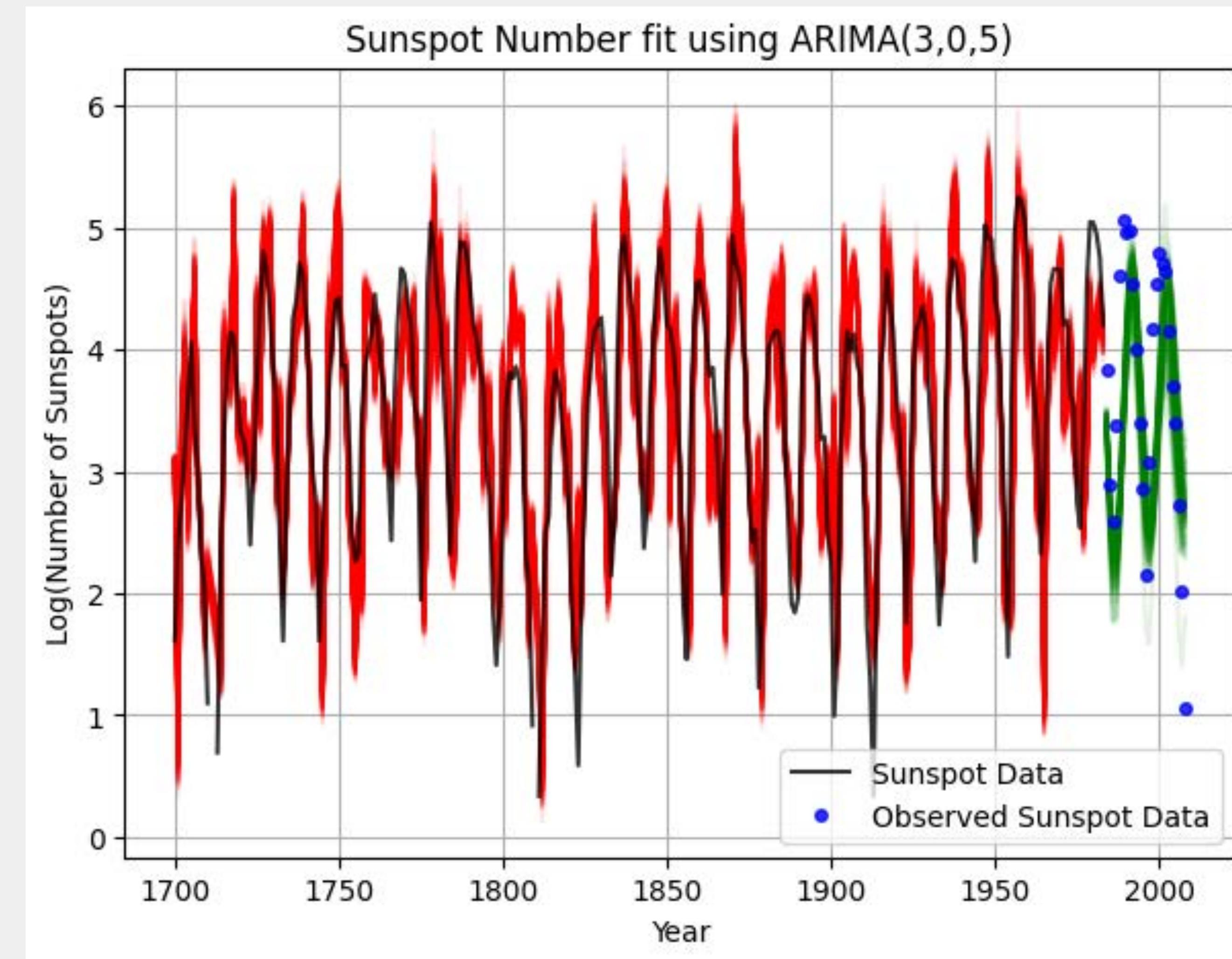
Astronomical Case Study

Sunspot Numbers



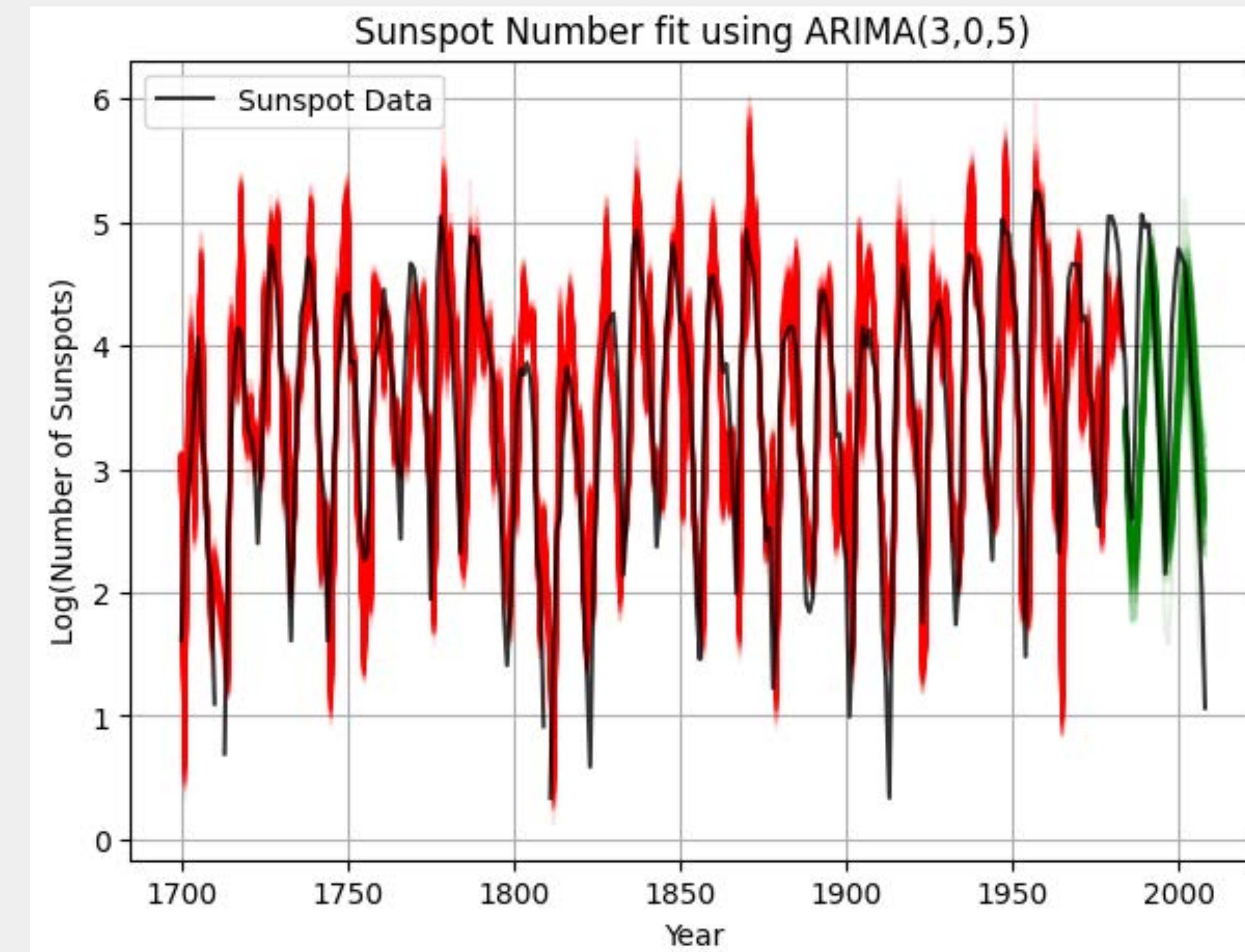
Astronomical Case Study

Sunspot Numbers



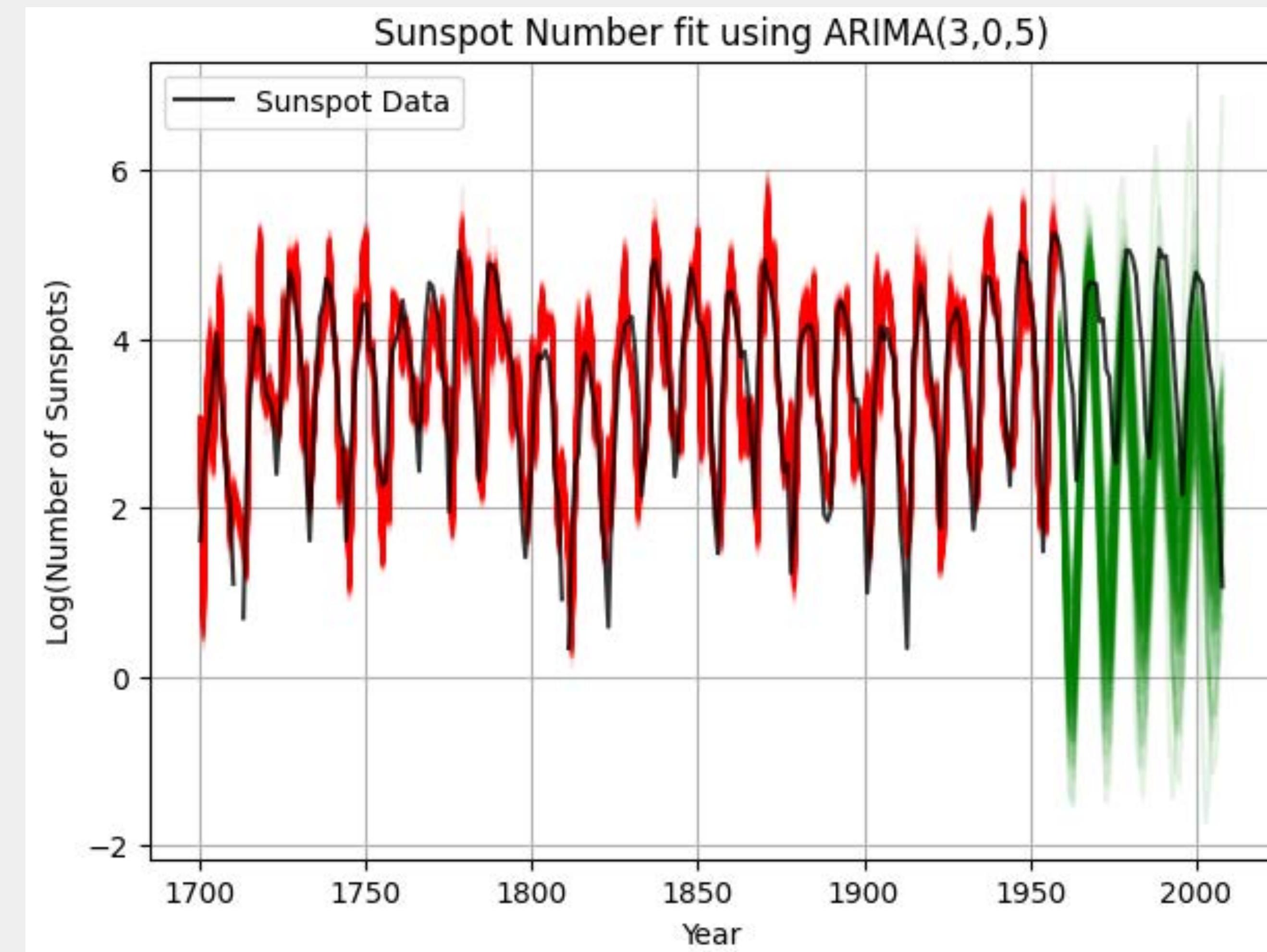
Astronomical Case Study

Sunspot Numbers



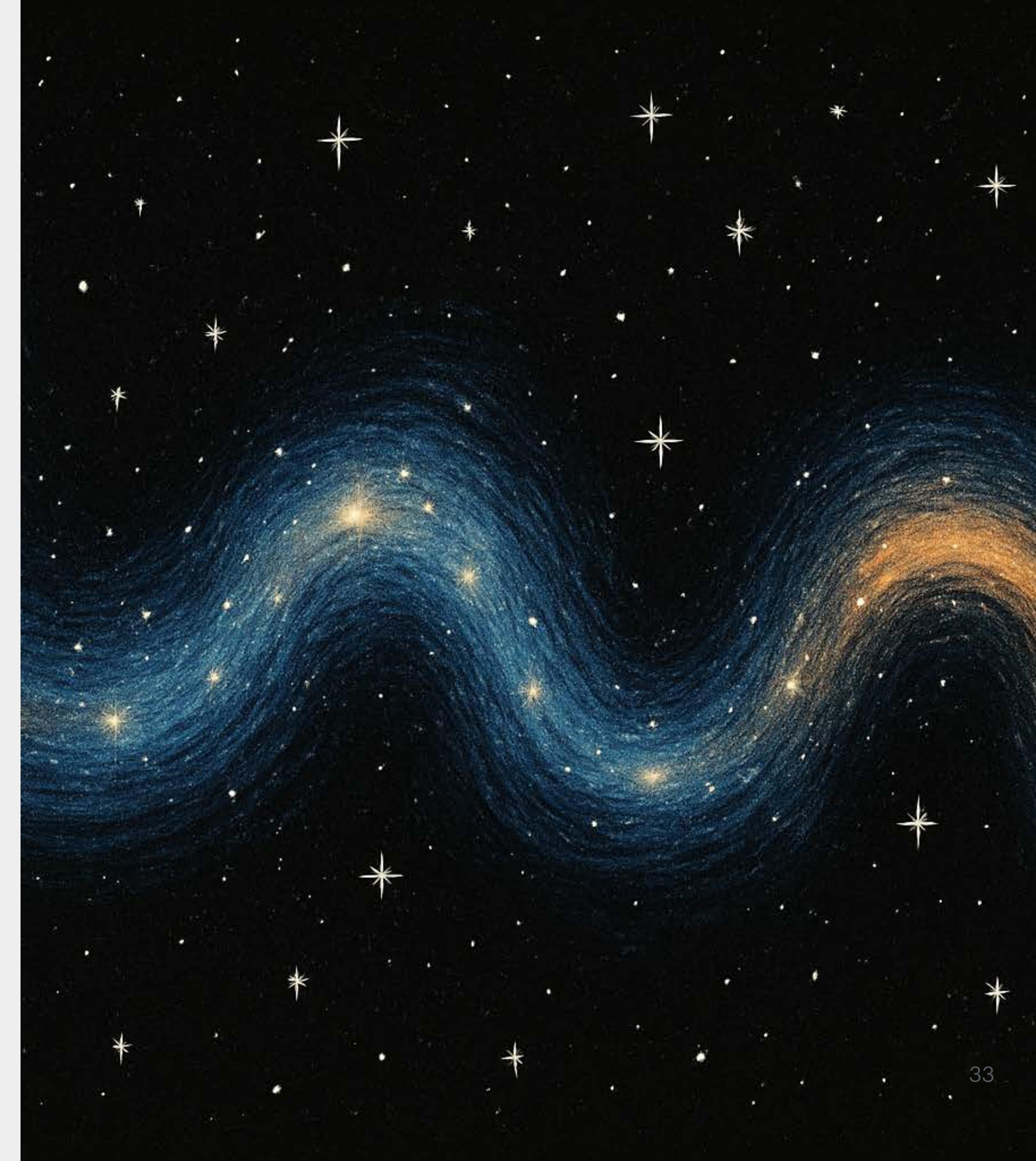
Astronomical Case Study

Sunspot Numbers



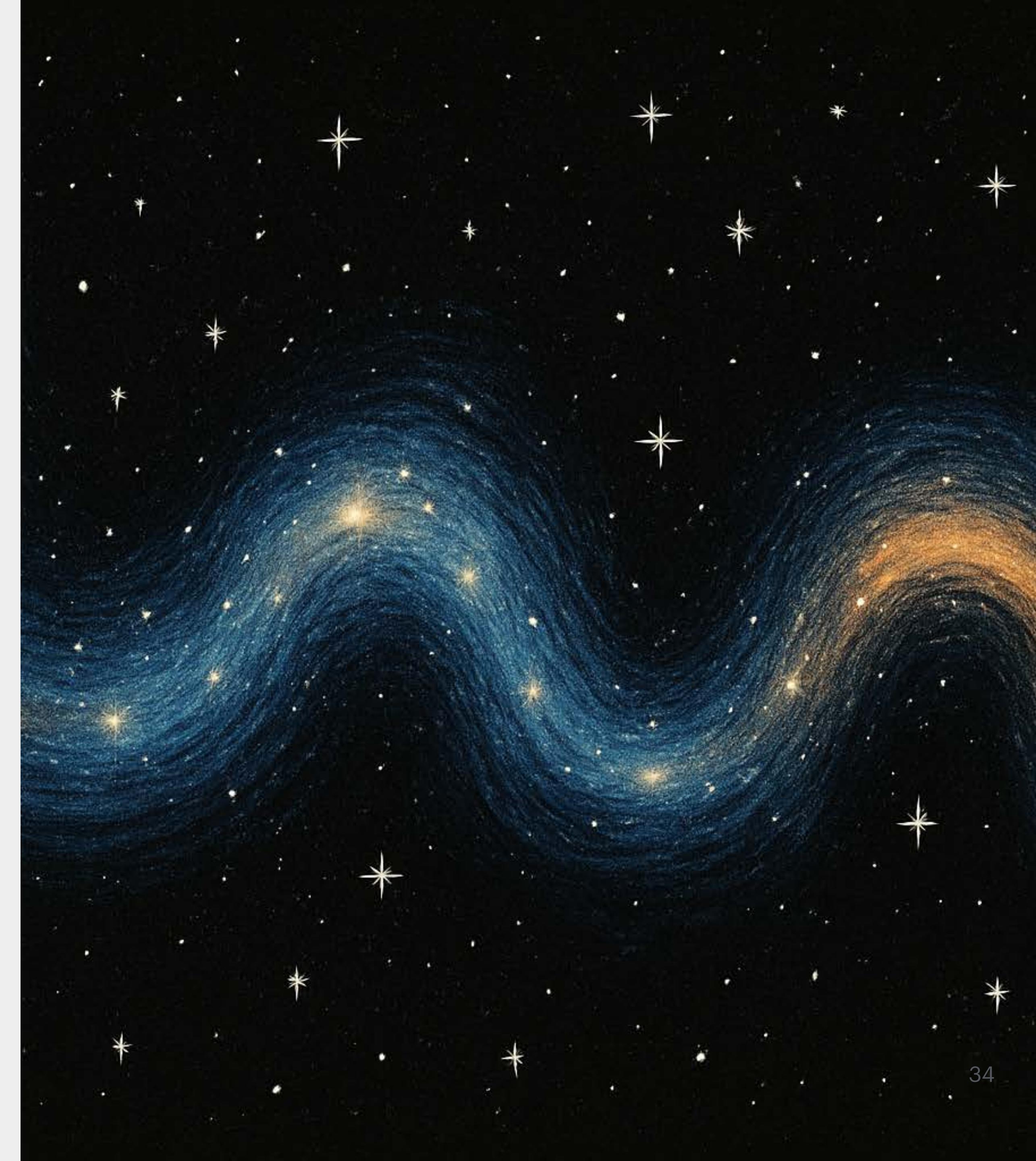
Limitations

- Requires data which is evenly spaced in time.
- Cannot capture long-term, seasonal trends.
- Lack of physical interpretations



Future Prospects

- Extending to other hybrid ARIMA models :Seasonal ARIMA, Continuous ARIMA, and so on.
- Implement on more datasets : AGN and quasar light curves, residual analysis, noise characterisation for gravitational wave data.
- Categorise astronomical datasets on the basis of preferred ARIMA models
—> possible physical insights?



Thank You!