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The era of time-domain astronomy.
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ARIMA modadels

History Window

— Forecast Window

Observed Data Points

. Analysing and forecasting points y, for a given time series y,

 Autoregressive (AR), Integrated (1), Moving Average (MA)



What are ARIMA Model

Autoregressive AR(p) :

- Modelling “autocorrelation” in time series.

- Fach datapoi

orevious (or “

« For example :

Nt correlated with its own
agged”’) values.

Daily average temperature




What are ARIMA Models?

Autoregressive AR(p) :

. Introduced in 1927, by Yule to model sunspot
NUMDeErs.

. p denotes number of lagged terms.

 For example p=2

Udny Yule




What are ARIMA Models?

Moving Average MA(q) :

- Similar to AR models but present points correlated with lagged forecast
errors (residuals).

+ g—> number of lagged tforecast errors. For example, MA(2) model :

y,=p+0e_;+ 0, _,+¢



What are ARIMA Mocels? .=

Integrated 1 (d) : N
- ARMA modelling requires a stationary
time series i.e. constant mean and 0]
variance. S, LI N N
¢ ‘l”tegrdted (‘) pCH’t Of AQ'MA tO keS CO re Non-stationary Time Series (Variance Increases Over Time)
of this by de-trending the time series T
using finite differencing. |
- d —> Order of differencing
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What are AR.

MA Model

ARIMA (p, d, q):

- Combined into ARIMA
and Jenkins in 197/1.

.« Used widely in econom

(p, d, q) by Box

Vi=p+ @y, + 0.6, + €

ics, finance and

weather/climate predictions.

« NOot so common In Astronomy




What are ARIMA Models?

ARIMA (p, d, q):

. p, d and g could be any positive integers.

. Difficult to select the right (p, d, q) order Vi=HT ¢Pyt—l? T qut—q T €

for fitting data.

- ARIMA models are over-parameterised,
always a risk of overfitting.

« Need a method to choose the correct
ARIMA Model for any given datao.
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lerence and Nested Sampling

A Primer on Bayesian Inference

. Infer the distribution of parameter values 4; of a model M from data D.

Start with “prior”
beliefs about /.

Observe data (D)

Update priors to get posteriors on /.

using Bayes Theorem
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Bayesian Inference and Nested Sampling

A Primer on Bayesian Inference :
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Bayesian Inference and Nested Sampling

A Primer on Bayesian Inference :

Prior
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Bayesian Inference and Nested Sampling

A Primer on Bayesian Inference :

Prior
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Bayesian Inference and Nested Sampling

A Primer on Bayesian Inference :

Likelihood Prior
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Bayesian Inference and Nested Sampling

A Primer on Bayesian Inference :

Likelihood Prior

L(D| /11'; M)ﬂ(/li; M)
/
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7 = JL(D | 2)7(A,)dA,



Bayesian Inference and Nested Sampling

A Primer on Bayesian Inference :

Likelihood Prior

L(D| /11'; M)ﬂ(/li; M)
/

ﬁ

P(/Ii;M‘D) —

Evidence: Z = JL(D\Ai)n(Ai)dli
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lerence and Nested Sampling

A Primer on Bayesian Inference :

P(/Ii;M‘D) —

Likelihood Prior

L(D| /11'; M)ﬂ(/li; M)
/

ﬁ

Evidence: Z = JL(D\Ai)n(Ai)dli

Useful for model comparison!!
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nference and Nested Sampling

Evidence for Model Comparison

7 = JL(D | 2 M )re(2;; M, )dA. = P(D | M,)

- Model with higher evidence statistically preferred by data.

- But, cumbersome to evaluate due to “curse of dimensionality”

. Solution —> Nested Sampling!
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Bayesian Inference and Nested Sampling
The Nested Sampling Algorithm

. Introduced by physicist John Skilling in 2003.

- Key idea is to define the “prior volume” - amount of prior mass contained inside an equal
ikelihood contour.

X(L) = J (A)dA
L>L(4)

. Transform the multi-dimensional evidence integral to a simple one-dimensional integral:

1
Z(X) = J L(X)dX
0



ARIMA x Nested Sampling

The ldea

j\}t — :u+¢pyt—p+9q€t—q+ €t

. Use the weights (¢p, Hq) and the standard deviation ¢ characterising €, as

parameters A, for Bayesian Inference.

- Nested Sampling serves as an efficient tool : model selection + posterior
distributions for parameters.

- Occam’s penalty ensures overfitting is avoided.
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ARIMA x Nested sampling

The Code

- BlackJAX Nested Sampler.

- Leveragl
seconds

ng the JAX ecosystem (runtime reduced from 3-4 minutes to just few

)

- Main object : ARIMA_Nested Sampler class

Posterior corner plots,

.Summdry(l posterior means,
Data " B log evidence, errors,
(p.d,a) d ARIMA_ Nested Sampler code runtime
Priors . jit_p\ot( )

Plots fits using
nosterior samples and
compare with data

—>

21



ARIMA x Nested sampling

Model Comparison

ARIMA_Nested Sampler

Data
ARIMA

List of Models Model ARIMA_Nested_Sampler
(pla dla Q1)9 (p29 dza qz)a (p39 d39 %) Selector

/

= Log Evidences

\

Priors ARIMA_Nested Sampler

22




ARIMA x Nested sampling

Testing on synthetic data

Posterior Distributions
Manually Generated AR(1) Time Series
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ARIMA x Nested Sampling

Testing on synthetic data
ARIMA(1,0,0) Fit for Artificial Data
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Testing on synthetic data
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Log Evidence

RIMA x Nested Ssampling

Log Evidence for ARIMA models
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ARIMA x Nested sampling

The Occam’s Penalty in Action

Log Evidence for ARIMA models

7 = JL(@ | D)(6)d6 =

7777777
—————

——————




Testing on synthetic data

ARMA(p,q) Evidence Heatmap

ARIMA x Nested sampling
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Astronomical Case Study

Sunspot Numbers

Number of Sunspots vs Year
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Astronomical Case Study

Sunspot Numbers

_ - 230 Posterior Distributions
Log Evidence Heatmap for Sunspot Numbers

MA(q)
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Astronomica

Sunspot Numbers

Case study

Sunspot Number fit using ARIMA(3,0,5)
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Sunspot Data
® Observed Sunspot Data
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Astronomica

Sunspot Numbers

Case study

Sunspot Number fit using ARIMA(3,0,5)
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Astronomical Case Study

Sunspot Numbers

Sunspot Number fit using ARIMA(3,0,5)

— Sunspot Data
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Imitations

« Requires data which is evenly
spaced in time.

- Cannot capture long-term,
seasonal trends.

. Lack of physical interpretations




Future Prospects | S

Extending to other hybrid ARIMA
models :Seasonal ARIMA, , - | -
Continuous ARIMA, and so on. e o s G ¥

Implement on more datasets : AGN S N ‘
and quasar light curves, residual TN B
analysis, noise characterisation for i . v ,ai ;.,-. 7,
gravitational wave data. .

Categorise astronomical datasets on
the basis of preferred ARIMA models _ | |
—> possible physical insights? B A SR iy 4
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