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A Novel Approach to 
Astronomical Time Series 

Analysis



Introduction
• The era of time-domain astronomy.  

• Common analysis methods : gaussian 
processes, polynomial models, 
machine learning etc.  
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Large Synoptic Survey Telescope (LSST)



ARIMA models

• Analysing and forecasting points  for a given time series  

• Autoregressive (AR), Integrated (I), Moving Average (MA)

̂yt yt
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Autoregressive AR(p) :

What are ARIMA Models?

• Modelling “autocorrelation” in time series. 

• Each datapoint correlated with its own 
previous (or “lagged”) values. 

• For example : Daily average temperature
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Autoregressive AR(p) :

What are ARIMA Models?

• Introduced in 1927, by Yule to model sunspot 
numbers. 

• p denotes number of lagged terms. 

• For example p=2 :
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Moving Average MA(q) :

What are ARIMA Models?

• Similar to AR models but present points correlated with lagged forecast 
errors (residuals). 

• q—> number of lagged forecast errors. For example, MA(2) model : 

̂yt = μ + θ1ϵt−1 + θ2ϵt−2 + ϵt
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Integrated I (d) :

What are ARIMA Models?

• ARMA modelling requires a stationary 
time series i.e. constant mean and 
variance. 

• Integrated (I) part of ARIMA takes care 
of this by de-trending the time series 
using finite differencing. 

• d —> Order of differencing
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ARIMA (p, d, q):

What are ARIMA Models?

• Combined into ARIMA (p, d, q) by Box 
and Jenkins in 1971. 

• Used widely in economics, finance and 
weather/climate predictions. 

• Not so common in Astronomy

̂yt = μ + ϕpyt−p + θqϵt−q + ϵt
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ARIMA (p, d, q):

What are ARIMA Models?

• p, d and q could be any positive integers. 

• Difficult to select the right (p, d, q) order 
for fitting data. 

• ARIMA models are over-parameterised, 
always a risk of overfitting. 

• Need a method to choose the correct 
ARIMA Model for any given data.

̂yt = μ + ϕpyt−p + θqϵt−q + ϵt

9



A Primer on Bayesian Inference

Bayesian Inference and Nested Sampling

• Infer the distribution of parameter values  of a model M from data D.λi
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Start with “prior” 
beliefs about λi

Observe data (D)

Update priors to get posteriors on  
using Bayes Theorem

λi



A Primer on Bayesian Inference :

Bayesian Inference and Nested Sampling

P(λi; M |D) =
L(D |λi; M)π(λi; M)

Z
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A Primer on Bayesian Inference :
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A Primer on Bayesian Inference :

Bayesian Inference and Nested Sampling

P(λi; M |D) =
L(D |λi; M)π(λi; M)

Z

Z = ∫ L(D |λi)π(λi)dλi
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A Primer on Bayesian Inference :

Bayesian Inference and Nested Sampling

P(λi; M |D) =
L(D |λi; M)π(λi; M)

Z

Z = ∫ L(D |λi)π(λi)dλiEvidence : 
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A Primer on Bayesian Inference :

Bayesian Inference and Nested Sampling

P(λi; M |D) =
L(D |λi; M)π(λi; M)

Z

Z = ∫ L(D |λi)π(λi)dλiEvidence : 

Useful for model comparison!! 17
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Evidence for Model Comparison

Bayesian Inference and Nested Sampling

• Model with higher evidence statistically preferred by data. 

• But, cumbersome to evaluate due to “curse of dimensionality”. 

• Solution —> Nested Sampling!
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Zn = ∫ L(D |λi; Mn)π(λi; Mn)dλi = P(D |Mn)



The Nested Sampling Algorithm

Bayesian Inference and Nested Sampling

• Introduced by physicist John Skilling in 2003. 

• Key idea is to define the “prior volume” - amount of prior mass contained inside an equal 
likelihood contour. 

 

• Transform the multi-dimensional evidence integral to a simple one-dimensional integral: 

X(L) = ∫L>L(λ)
π(λ)dλ

Z(X) = ∫
1

0
L(X)dX
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The Idea

ARIMA x Nested Sampling

• Use the weights ( , ) and the standard deviation  characterising  as 

parameters  for Bayesian Inference. 

• Nested Sampling serves as an efficient tool : model selection + posterior 
distributions for parameters. 

• Occam’s penalty ensures overfitting is avoided. 

ϕp θq σ ϵt

λi

20

̂yt = μ+ϕpyt−p+θqϵt−q+ϵt P(λi; M |D) =
L(D |λi; M)π(λi; M)

Z



The Code

ARIMA x Nested Sampling

• BlackJAX Nested Sampler. 

• Leveraging the JAX ecosystem (runtime reduced from 3-4 minutes to just few 
seconds!) 

• Main object : ARIMA_Nested_Sampler class

ARIMA_Nested_Sampler

Data
(p,d,q)
Priors

.summary( )
Posterior corner plots, 
posterior means,      
log evidence, errors, 
code runtime

.fit_plot( ) Plots fits using 
posterior samples and 
compare with data
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Model Comparison

ARIMA x Nested Sampling

Data

Priors

ARIMA_Nested_Sampler

List of Models 
(p1, d1, q1), (p2, d2, q2), (p3, d3, q3)

ARIMA 
Model 

Selector
ARIMA_Nested_Sampler

ARIMA_Nested_Sampler

= Log Evidences
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Testing on synthetic data

ARIMA x Nested Sampling
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Testing on synthetic data

ARIMA x Nested Sampling
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Testing on synthetic data

ARIMA x Nested Sampling
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The Occam’s Penalty in Action

ARIMA x Nested Sampling
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Z = ∫ L(θ |D)π(θ)dθ



Testing on synthetic data

ARIMA x Nested Sampling
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Sunspot Numbers

Astronomical Case Study
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Sunspot Numbers

Astronomical Case Study
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Sunspot Numbers

Astronomical Case Study
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Sunspot Numbers

Astronomical Case Study
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Sunspot Numbers

Astronomical Case Study
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Limitations

• Requires data which is evenly 
spaced in time. 

• Cannot capture long-term, 
seasonal trends. 

• Lack of physical interpretations
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Future Prospects

• Extending to other hybrid ARIMA 
models :Seasonal ARIMA, 
Continuous ARIMA, and so on. 

• Implement on more datasets : AGN 
and quasar light curves, residual 
analysis, noise characterisation for 
gravitational wave data. 

• Categorise astronomical datasets on 
the basis of preferred ARIMA models 
—> possible physical insights?
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Thank You!
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