Homotopical Type Theory

Eaton Liu

Magdalene College

Type theory

Type theory: a formal system for developing mathematics Primitives:

- *types*: $\vdash A$, e.g. \mathbb{N} , \mathbb{R} , S^1 ;
- *terms*: \vdash *a* : *A*, e.g. 1 : \mathbb{N} , 1 : \mathbb{R} , base : S^1 ;
- family of types: $x : A \vdash B(x), x : A, y : B(x) \vdash C(x, y),$ e.g. $n : \mathbb{N} \vdash \mathbb{R}^n, n : \mathbb{N} \vdash \text{isPrime}(n);$
- family of terms: $x : A \vdash b_x : B(x), x : A, y : B(x) \vdash c_{x,y} : C(x,y),$ e.g. $n : \mathbb{N} \vdash (0, ..., 0) : \mathbb{R}^n$.

Constructions:

- product types: $A \times B$, sum types: A + B, function types: $A \rightarrow B$;
- dependent product types: $\prod_{x:A} B(x)$, dependent sum types: $\sum_{x:A} B(x)$;
- identity types: $x, y : A \vdash x =_A y$;

equipped with rules to construct their terms (introduction), deconstruct their terms (elimination), and compute with them (computation).

Propositions as types

How to prove the proposition $(p \to (q \to r)) \to ((p \to q) \to (p \to r))$?

Proof.

Assume $p \to (q \to r)$, then assume $p \to q$, and finally assume p. We get q by applying $p \to q$ to p, and we conclude r by applying $p \to (q \to r)$ to p then q.

Same as constructing a function
$$(r^q)^p \to (r^p)^{(q^p)}!$$

 $\lambda f. \lambda g. \lambda x. \ (f \ x) \ (g \ x) : (p \to (q \to r)) \to (p \to q) \to (p \to r).$

Type theory	Logic
Type A	Proposition A
Term <i>a</i> : <i>A</i>	Proof of proposition A
$A \times B$	Conjunction $A \wedge B$
A + B	Disjunction $A \lor B$
A o B	Implication $A o B$
$\prod_{x:A} B(x)$	Universal quantification $\forall x \in A, B(x)$
$\sum_{x:A} B(x)$	Existential quantification $\exists x \in A, B(x)$

Homotopical interpretation

Types as spaces, terms as points.

Type theory	Homotopy theory
A o B	Space of continuous maps $A \rightarrow B$
$A \times B$	Product space $A \times B$
A + B	Disjoint union $A + B$
Type family $x : A \vdash B(x)$	Fibration over A
Term family $x : A \vdash b_x : B(x)$	Section of the fibration
$\prod_{x:A} B(x)$	Space of sections
$\sum_{x:A} B(x)$	Total space of fibration

Identity types

Rules

Formation rule: $x, y : A \vdash x =_A y$;

Introduction rule: $x : A \vdash refl_x : x =_A x$;

Elimination rule (path induction): To give a term family

 $x, y : A, p : x =_A y \vdash b(x, y, p) : B(x, y, p)$, suffices to assume $y \equiv x$ and $p \equiv \text{refl}_x$ (i.e. giving $b' : B(x, x, \text{refl}_x)$).

Computation rule: The function constructed by the elimination rule satisfies $b(x, x, refl_x) \equiv b'$.

Logical interpretation: the proposition that x and y are equal;

Homotopical interpretation: the *space of paths* from x to y in A.

Terms $p: x =_A y$ are paths from x to y.

 $refl_x : x =_A x$ is the constant path at x.

Can form iterated identity types p = x = Ay q (homotopies between paths),

r = p = x = Ayq s (homotopies between homotopies), etc.

Path induction

Concatenation/Transitivity

Given x, y, z : A, $p : x =_A y$, $q : y =_A z$, there is a path $p \cdot q : x =_A z$.

Proof/Construction.

By path induction on p, assume $y \equiv x$ and $p \equiv \text{refl}_x$. Then have $q: x =_A z$, so by path induction on q, assume $z \equiv x$ and $q \equiv \text{refl}_x$. Then $\text{refl}_x: x =_A x$ has the desired type.

Pattern-matching definition: $refl_x \cdot refl_x := refl_x$.

Similarly, can prove symmetry/inverses, so identity types are "equivalence relations". Concatenation also satisfies associativity, left and right unit laws, and inverse laws up to higher paths.

Warning

$$K: \prod_{p:x=_{A^X}} p =_{x=_{A^X}} refl_x$$

 $K(refl_x) := refl_{refl_x}$

Truncations

Problem with logical interpretation: disjunctions and existentials may have non-identical proofs (encode too much data).

A type A is contractible if

$$\sum_{a:A}\prod_{x:A}(a=_Ax).$$

Logical interpretation: A is a singleton.

Homotopical interpretation: there is a point a:A with a homotopy const_a \sim id_A.

A type A is a proposition if for all x, y : A, $x =_A y$ is contractible (proof irrelevance).

A type A is a set if for all x, y : A and $p, q : x =_A y$, we have $r : p =_{x =_A y} q$ (uniqueness of identity proofs).

 \mathbb{N} is a set; isContr(A), isProp(A), isSet(A) are propositions.

For any type A, can define its *propositional truncation* $\|A\|$ with a map $\eta: A \to \|A\|$ that is universal for maps from A to a proposition B.

Now define $A \vee B := ||A + B||$, $\exists (x : A), B(x) := ||\Sigma(x : A), B(x)||$.

Higher inductive types

Inductive types: types A "freely generated" by some constructors $X \to A$.

Example (\mathbb{N})

- 0 : N
- ullet succ : $\mathbb{N} \to \mathbb{N}$

Higher inductive types: allow path constructors.

Example (S^1)

- base : *S*¹
- loop : base $=_{S^1}$ base

Example (T^2)

- b: T²
- $p: b =_{T^2} b$
- $q: b =_{T^2} b$
- $\bullet \ t: p \cdot q =_{b=_{\tau^2}b} q \cdot p$

Higher inductive types (HITs)

Example (S^2)

- base : *S*²
- surf : $refl_{base} =_{base=_{\varsigma^2}base} refl_{base}$

Can compute their homotopy groups, show $T^2 \cong S^1 \times S^1$, etc. internally. HITs are not just cell complexes!

Example (Propositional truncation ||A||)

- $\eta: A \rightarrow ||A||$
- $p:(x,y:||A||) \to x =_A y$

More generally, can define n-truncations that erase all homotopy data above dimension n, giving rise to the *Postinikov tower*.

HITs can also be used to define set-quotients or quotient types, which allow us to construct (homotopy) colimits.

