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Main results

Conjecture [Briançon-Iarrobino 1978]
Briançon and Iarrobino made a prediction for where the worst point 
on 𝐻𝑖𝑙𝑏𝑙𝔸𝑁 is.

Theorem [Mackenzie-Rezaee 2025]
The above Conjecture is true for 𝑁 = 3.



Intro to Hilbert Scheme

• The idea of a Hilbert Scheme is to parametrise the subschemes of 
a variety.

• It has some nice properties: if we start with a smooth connected 
variety then the resulting Hilbert Scheme will also be connected.

• Unfortunately, it is also highly singular: Vakil proved Murphy’s law 
for Hilbert Schemes, “There is no singularity so horrible that it 
cannot occur in a Hilbert scheme”. 



What is the Hilbert Scheme of points

• Consider the set of ways to have 𝑙 points in 𝑁 dimensions.
• It is 𝑙𝑁 dimensional as each point can move in 𝑁 dimensions.



What is the Hilbert Scheme of points

• We can represent each point in this space by an ideal 𝐼 of R =
ℂ 𝑥1, 𝑥2, … , 𝑥𝑁 , the set of polynomials which are 0 at all the 
points.

• We can then represent the properties of original point 
algebraically.

• The number of points is the dimension of the space 𝑅/𝐼.

• The tangent space at an ideal 𝐼 is given by 𝐻𝑜𝑚𝑅 𝐼,
𝑅

𝐼
.



The Hilbert Scheme of points, 𝐻𝑖𝑙𝑏𝑙𝔸𝑁

• The Hilbert Scheme of points is defined by taking all ideals in 𝑅
such that 𝑅/𝐼 is 𝑙 dimensional.

• But this means that the tangent space at some points has a 
dimension higher than 𝑁𝑙.





The project
• The project was to investigate how large 

the tangent space can be for any fixed 𝑙
specifically focussing on the case 𝑁 =
3.

• The known results for 𝐻𝑖𝑙𝑏𝑙𝔸𝑁 are that:
• When 𝑁 = 2 the tangent space always has 

dimension 2𝑙.
• The maximal tangent space is achieved by 

a monomial ideal.
• The maximal tangent space is achieved by 

a Borel-fixed or Strongly Stable ideal.



Conjectures

• Briançon and Iarrobino made a 
conjecture for the maximum 
tangent space when 𝑙 is a 
(hyper)-tetrahedral number.



Methods

• We considered slicing the ideal and 
recovered the upper bound achieved 
by Ramkumar and Sammartano.

• With some extra work, it was possible 
to refine the upper bound sufficiently 
to prove the Briançon Iarrobino 
conjecture in 3 dimensions.



Next Steps

• At the end of the project, we had another idea involving cutting 
horizontally.

• This could be used for proving the Briançon Iarrobino conjecture 
in any number of dimensions.



Thank you for listening
Any questions?
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