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Main results

Conjecture [Briancon-larrobino 1978]

Briancon and larrobino made a prediction for where the worst point
on Hilb*AY is.

Theorem [Mackenzie-Rezaee 2025]
The above Conjecture is true for N = 3.



Intro to Hilbert Scheme

* The idea of a Hilbert Scheme is to parametrise the subschemes of
a variety.

* |t has some nice properties: if we start with a smooth connected
variety then the resulting Hilbert Scheme will also be connected.

* Unfortunately, it is also highly singular: Vakil proved Murphy’s law
for Hilbert Schemes, “There is no singularity so horrible that it
cannot occur in a Hilbert scheme”.



What is the Hilbert Scheme of points

* Consider the set of ways to have [ points in N dimensions.
e [tis IN dimensional as each point can move in N dimensions.



What is the Hilbert Scheme of points

* We can represent each point in this space by anideall of R =

Clxq, x5, ..., xy], the set of polynomials which are 0 at all the
points.

* We can then represent the properties of original point
algebraically.

* The number of points is the dimension of the space R/I.

* The tangent space atanideall is given by Homp (I, ?)



The Hilbert Scheme of points, Hilb'AY

* The Hilbert Scheme of points is defined by taking all ideals in R
such that R/l is [ dimensional.

* But this means that the tangent space at some points has a
dimension higher than NI.
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The project

* The project was to investigate how large
the tangent space can be for any fixed [

specifically focussing on the case N =
3.

* The known results for Hilb'AY are that:

* When N = 2 the tangent space always has
dimension 21.

* The maximal tangent space is achieved by
a monomial ideal.

* The maximal tangent space is achieved by
a Borel-fixed or Strongly Stable ideal.




Conjectures

* Briancon and larrobino made a
conjecture for the maximum
tangent space when l is a
(hyper)-tetrahedral number.



Methods

* We considered slicing the ideal and
recovered the upper bound achieved
by Ramkumar and Sammartano.

* With some extra work, it was possible
to refine the upper bound sufficiently
to prove the Briancon larrobino
conjecture in 3 dimensions.




Next Steps

* At the end of the project, we had another idea involving cutting
horizontally.

* This could be used for proving the Briancon larrobino conjecture
In any number of dimensions.
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