

Maximal Singularities on the Hilbert Scheme of points

Owen Mackenzie with thanks to Fatemeh Rezaee for supervising,
Mark Gross and ERC for funding and supporting the project and
SRIM for providing the opportunity.

Main results

Conjecture [Briançon-Iarrobino 1978]

Briançon and Iarrobino made a prediction for where the worst point on $Hilb^l \mathbb{A}^N$ is.

Theorem [Mackenzie-Rezaee 2025]

The above Conjecture is true for $N = 3$.

Intro to Hilbert Scheme

- The idea of a Hilbert Scheme is to parametrise the subschemes of a variety.
- It has some nice properties: if we start with a smooth connected variety then the resulting Hilbert Scheme will also be connected.
- Unfortunately, it is also highly singular: Vakil proved Murphy's law for Hilbert Schemes, “There is no singularity so horrible that it cannot occur in a Hilbert scheme”.

What is the Hilbert Scheme of points

- Consider the set of ways to have l points in N dimensions.
- It is lN dimensional as each point can move in N dimensions.

What is the Hilbert Scheme of points

- We can represent each point in this space by an ideal I of $R = \mathbb{C}[x_1, x_2, \dots, x_N]$, the set of polynomials which are 0 at all the points.
- We can then represent the properties of original point algebraically.
- The number of points is the dimension of the space R/I .
- The tangent space at an ideal I is given by $\text{Hom}_R\left(I, \frac{R}{I}\right)$.

The Hilbert Scheme of points, $Hilb^l \mathbb{A}^N$

- The Hilbert Scheme of points is defined by taking all ideals in R such that R/I is l dimensional.
- But this means that the tangent space at some points has a dimension higher than Nl .

[J. Jelisiejew]
(PhD thesis)

Compactification
of disjoint
Points
 $\dim = n \cdot (\dim X)$

d

Complicated
singularities

Higher
dim'l
Component

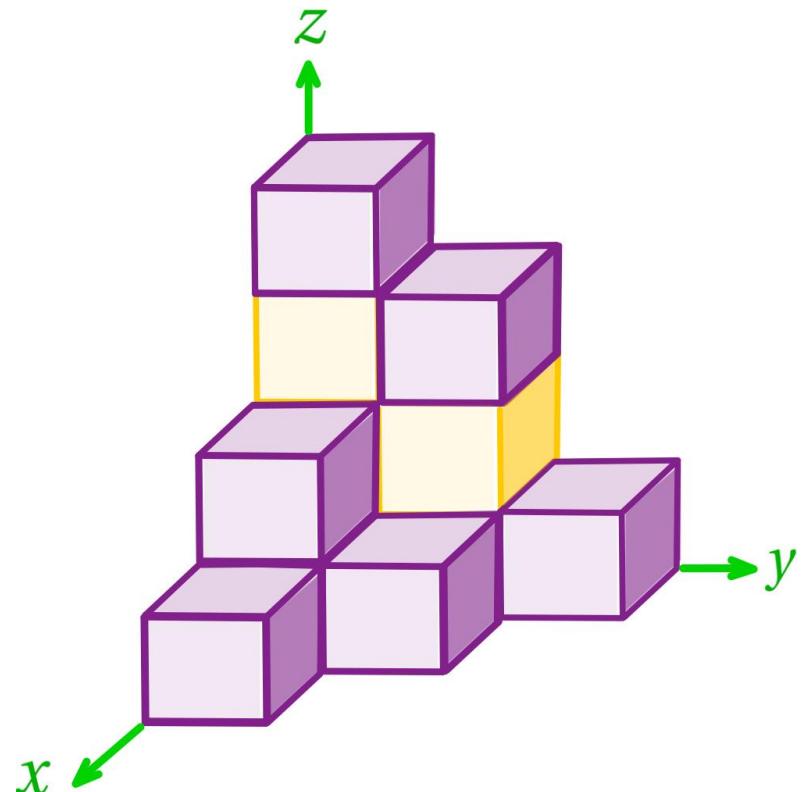
not much known

not many
known examples

there might be
smaller dim'l
components
but it cannot have leaves

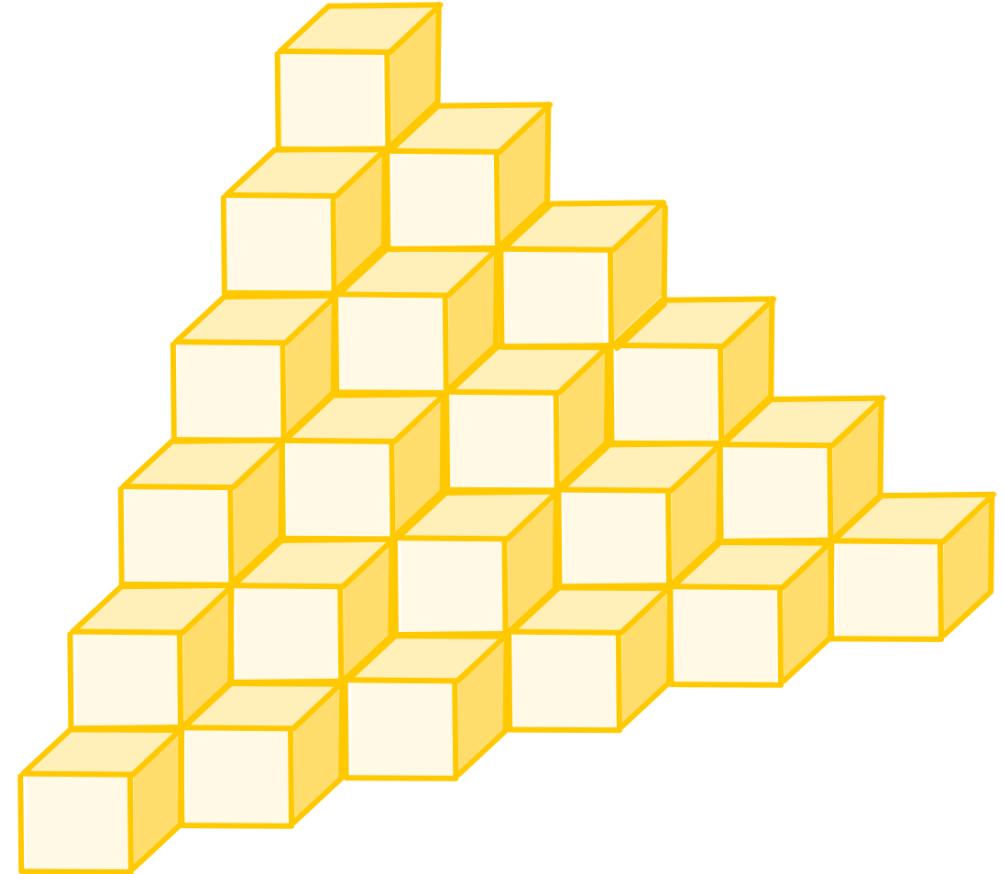
The project

- The project was to investigate how large the tangent space can be for any fixed l specifically focussing on the case $N = 3$.
- The known results for $Hilb^l \mathbb{A}^N$ are that:
 - When $N = 2$ the tangent space always has dimension $2l$.
 - The maximal tangent space is achieved by a monomial ideal.
 - The maximal tangent space is achieved by a Borel-fixed or Strongly Stable ideal.



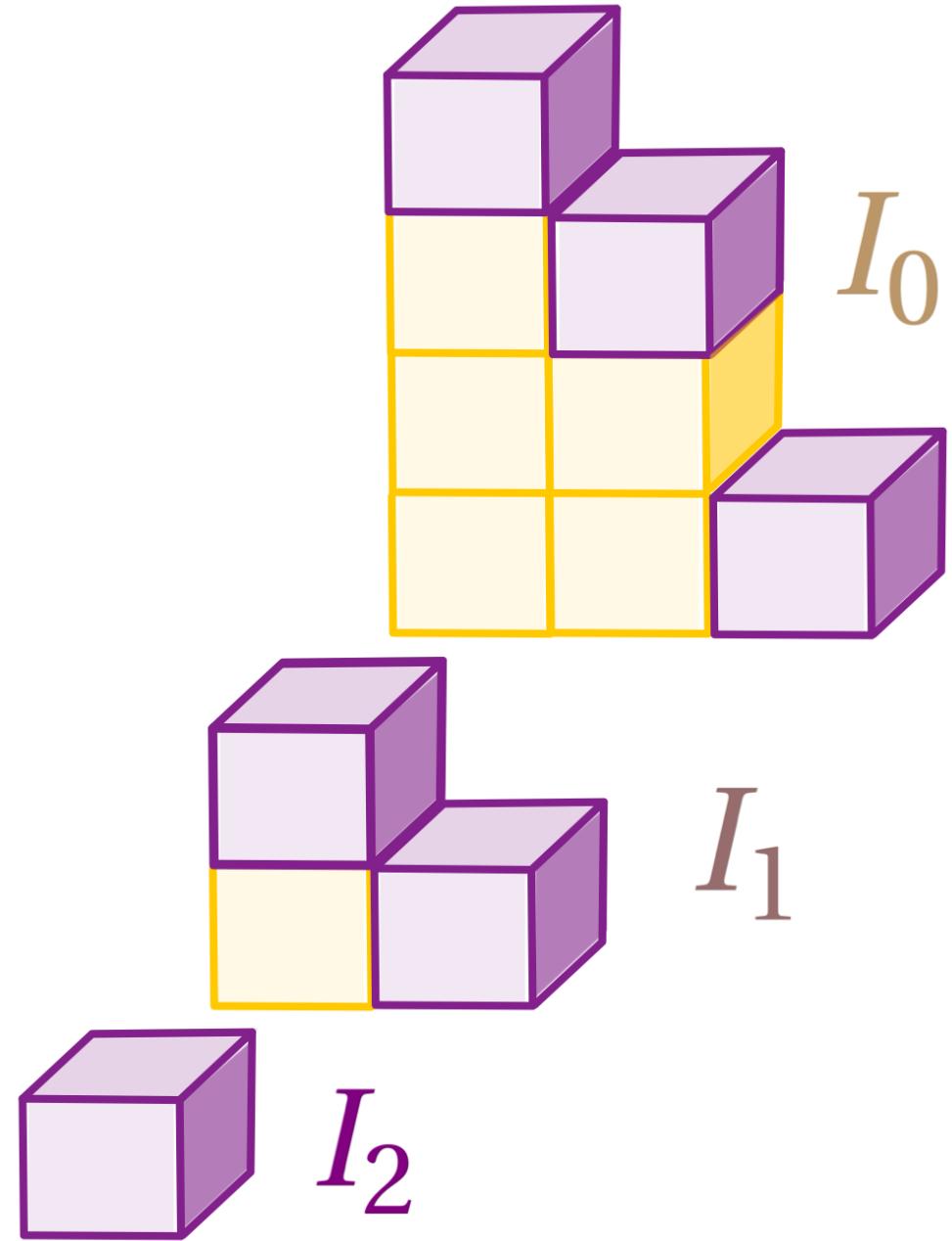
Conjectures

- Briançon and Jarrobino made a conjecture for the maximum tangent space when l is a (hyper)-tetrahedral number.



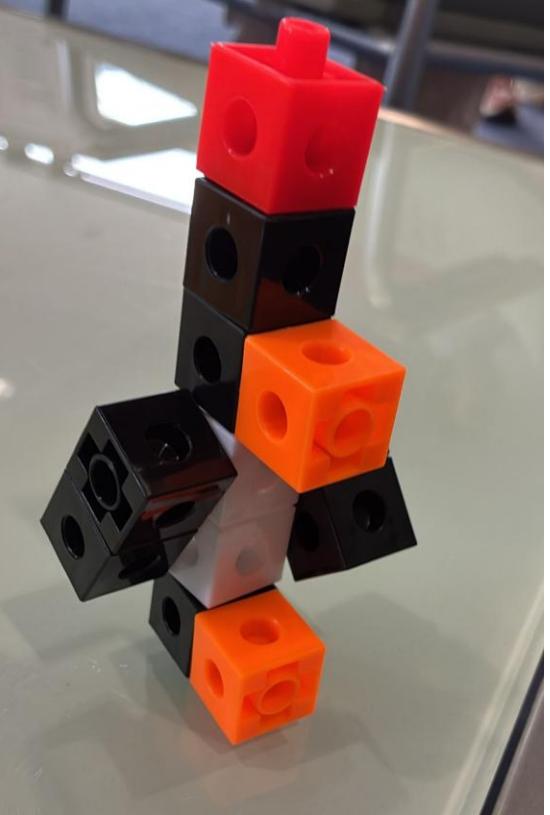
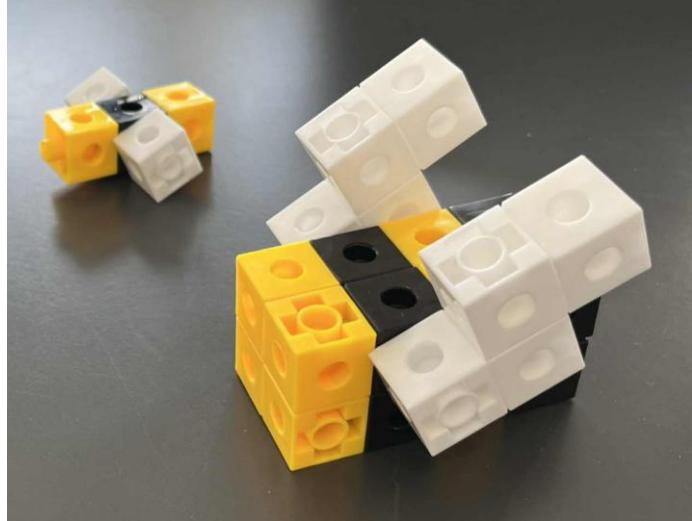
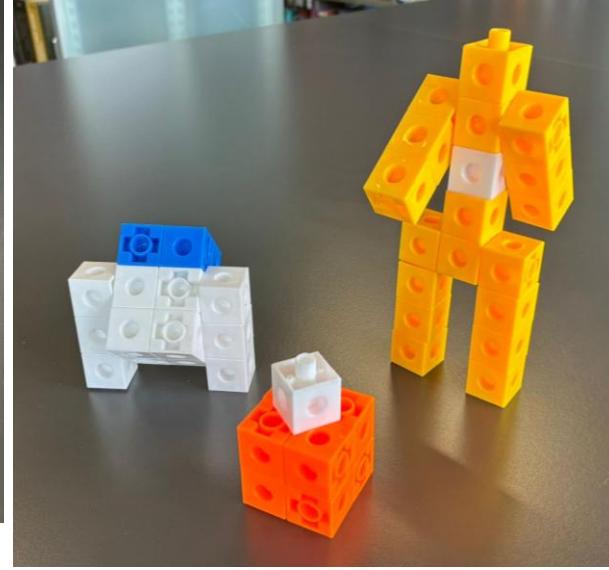
Methods

- We considered slicing the ideal and recovered the upper bound achieved by Ramkumar and Sammartano.
- With some extra work, it was possible to refine the upper bound sufficiently to prove the Briançon larrobino conjecture in 3 dimensions.



Next Steps

- At the end of the project, we had another idea involving cutting horizontally.
- This could be used for proving the Briançon larrobino conjecture in any number of dimensions.



Thank you for listening

Any questions?

