Saturation for the Poset ${\cal N}$

Nandi Wang

University of Cambridge October, 2025

Table of Contents

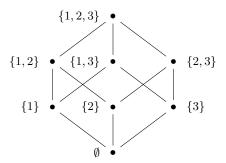
1 Intro: What's Poset Saturation?

2 Structure of N-Saturated Families

3 Proof Outline

Posets (Partially Ordered Sets)

Partial order: reflexive, antisymmetric, transitive e.g. power-set of $[n]=\{1,2,\ldots,n\}$, ordered by set inclusion, represented by Hasse diagram:



Saturation: Graphs

Fix a graph H. A graph G is H-saturated iff

- lacksquare G contains no copy of H
- $lue{}$ adding any extra edge to G creates a copy of H

The **saturation number** is

 $\operatorname{sat}(n,H) = \underline{\text{minimum}}$ no. of edges in H-saturated n-vertex graph

Saturation: Posets

Fix a poset \mathcal{P} . Let \mathcal{F} be a family of subsets of [n].

 \mathcal{F} is induced \mathcal{P} -saturated iff

- lacksquare ${\mathcal F}$ contains no induced copy of ${\mathcal P}$
- lacksquare adding any other subset to ${\mathcal F}$ creates an induced copy of ${\mathcal P}$

The induced saturation number is

 $\operatorname{sat}^*(n,\mathcal{P}) = \underline{\text{minimum}}$ size of \mathcal{P} -saturated family of subsets of [n]

Induced / Non-induced

Induced: preserve all the comparabilities <u>AND incomparabilities</u>. **Non-induced:** preserve all the comparabilities.

e.g.

the butterfly ${\cal B}$

Induced / Non-induced

Induced: preserve all the comparabilities <u>AND incomparabilities</u>. **Non-induced:** preserve all the comparabilities.

e.g.

Non-induced copy of $\mathcal N$ in blue; but no induced copy in $\mathcal B$.

Dichotomy on $\operatorname{sat}^*(n, \mathcal{P})$

Keszegh, Lemons, Martin, Pálvölgyi and Patkós, (2021):

■ For any poset \mathcal{P} , either $\operatorname{sat}^*(n,\mathcal{P})$ is bounded by a constant, or $\operatorname{sat}^*(n,\mathcal{P}) \ge \log_2 n$ for all n.

They also conjectured:

■ For any poset \mathcal{P} , either $\operatorname{sat}^*(n,\mathcal{P})$ is bounded by a constant, or $\operatorname{sat}^*(n,\mathcal{P}) \geq n+1$ for all n.

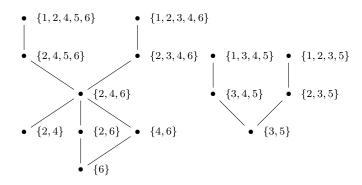
Goal of Project

To find a linear lower bound on $sat^*(n, \mathcal{N})$.

The poset ${\mathcal N}$

Let $\mathcal F$ be an $\mathcal N$ -saturated family of subsets of [n]. $\emptyset, [n] \in \mathcal F$ always.

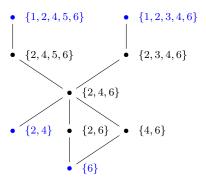
Let $\mathcal F$ be an $\mathcal N$ -saturated family of subsets of [n]. $\emptyset, [n] \in \mathcal F$ always.



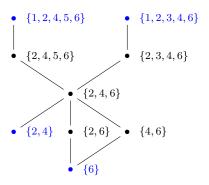
An example of \mathcal{N} -saturated family with n=6, excluding \emptyset , [n]

Let $\mathcal G$ be a component of $\mathcal F$, $A\in\mathcal G$ maximal, $B\in\mathcal G$ minimal. Then $B\subseteq A$.

Let $\mathcal G$ be a component of $\mathcal F$, $A\in\mathcal G$ maximal, $B\in\mathcal G$ minimal. Then $B\subseteq A$.

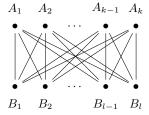


Let $\mathcal G$ be a component of $\mathcal F$, $A\in\mathcal G$ maximal, $B\in\mathcal G$ minimal. Then $B\subseteq A$.

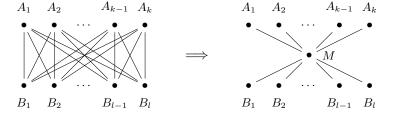


Proof. Look at the shortest path from A to B.

Midpoints



Midpoints



 ${\cal G}$ has some midpoint between its maximals and minimals (not necessarily unique).

Midpoints

Pick the smallest midpoint M in \mathcal{G} .

- Every $X \in \mathcal{G}$ is comparable to M.
- When bounding $|\mathcal{F}|$, can assume $|M| \leq n/2$.

A Graph Theory Argument

Consider a family $\mathcal F$ of subsets of [n]. Suppose for all $i\in [n]$, there are $S_i,S_i\cup\{i\}\in\mathcal F$, $i\notin S_i$. Then $|\mathcal F|\geq n+1$.

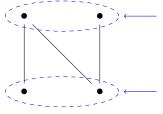
A Graph Theory Argument

Consider a family $\mathcal F$ of subsets of [n]. Suppose for all $i\in [n]$, there are $S_i,S_i\cup \{i\}\in \mathcal F$, $i\notin S_i$. Then $|\mathcal F|>n+1$.

Proof. Construct a graph G with vertex set \mathcal{F} , and n edges between each pair $(S_i, S_i \cup \{i\})$, $i \in [n]$.

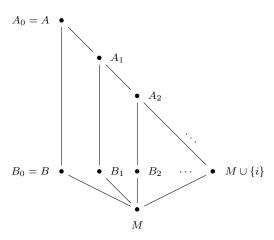
- lacktriangleright Recall: some smallest midpoint $|M| \leq n/2$
- $\blacksquare \geq n/2 \text{ singletons } i \not\in M \text{, look at } M \cup \{i\}$
- If $M \cup \{i\} \notin \mathcal{F}$, form an \mathcal{N} :

- lacktriangleright Recall: some smallest midpoint $|M| \leq n/2$
- $lacksquare \geq n/2$ singletons $i \notin M$, look at $M \cup \{i\}$
- If $M \cup \{i\} \notin \mathcal{F}$, form an \mathcal{N} :



only $\leq |\mathcal{F}| - 2$ singletons have $M \cup \{i\}$ at the top

all the other singletons have $M \cup \{i\}$ at the bottom



So
$$n/2-|\mathcal{F}|+2$$
 singletons satisfy the condition, giving

$$|\mathcal{F}| \ge n/4 + 3/2.$$

Therefore

$$\operatorname{sat}^*(n, \mathcal{N}) \ge n/4 + 3/2$$

Remarks

- Improve the current lower bound from \sqrt{n} to n/4.
- $\operatorname{sat}^*(n, \mathcal{N}) \leq 2n$ by Ferrara et al. (2017):

So, $\operatorname{sat}^*(n,\mathcal{N})$ grows linearly.