How should we do linear regression?

Sara El Khamlichi

October 13, 2025

Supervisors: Elliot Young and Richard Samworth

Linear Models

Model

$$Y = X^{\top} \beta_0 + \varepsilon, \qquad X, \beta_0 \in \mathbb{R}^d, \quad \varepsilon \perp \!\!\! \perp X.$$

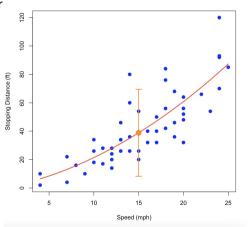
Ordinary Least Squares (OLS)

$$\hat{eta}^{ ext{OLS}} = \operatorname*{\mathsf{argmin}}_{eta \in \mathbb{R}^d} \ \sum_{i=1}^n (Y_i - X_i^ op eta)^2.$$

- Gauss–Markov theorem: OLS is the Best Linear Unbiased Estimator (BLUE).
- The lm() function builds on OLS: hypothesis tests, confidence and prediction intervals.
- \Rightarrow But:
 - Optimality is only among linear, unbiased estimators.
 - Inference tools assume Gaussian errors.

Example: What is a prediction interval?

- We observe the speed of cars X_i and their stopping distance Y_i , for i = 1, ..., n.
- Model: $Y = \beta_1 X + \beta_2 X^2 + \varepsilon$, $\varepsilon \perp \!\!\! \perp X$ where $\varepsilon \sim N(0, \sigma^2)$.
- **Goal:** Predict Y^* for a new speed $x^* = 15$ mph.



Prediction Intervals — Definitions

Setup

We fit a linear model to data $\mathcal{D}_n = \{(X_i, Y_i)\}_{i=1}^n$ of the form $Y_i = X_i^{\top} \beta_0 + \varepsilon_i$. We have a new independent pair (X^*, Y^*) .

Prediction Interval

A level $(1-\alpha)$ prediction interval is a random interval $C_n(x^*;\alpha)\subset\mathbb{R}$ such that

$$\mathbb{P}(Y^* \in C_n(x^*; \alpha) \mid \mathcal{D}_n, X^* = x^*) = 1 - \alpha.$$

Asymptotic Validity

A sequence of intervals $\{C_n(x^*; \alpha)\}_{n\geq 1}$ is asymptotically valid if

$$\mathbb{P}(Y^* \in C_n(x^*; \alpha) \mid \mathcal{D}_n, X^* = x^*) \xrightarrow{p} 1 - \alpha, \text{ as } n \to \infty.$$

How Wrong Can OLS Be?

Lemma

In the linear model

$$Y = X^{\top} \beta_0 + \varepsilon, \quad \varepsilon \perp \!\!\! \perp X, \quad \mathbb{E}(\varepsilon) = 0, \quad \mathrm{Var}(\varepsilon) = \sigma^2,$$

as $n o \infty$,

$$\mathbb{P}(Y^* \in C_n^{\mathrm{OLS}}(x^*; \alpha) \, | \, \mathcal{D}_n) \, \stackrel{p}{\to} \, 1 - \mathbb{P}(|\varepsilon| \ge \sigma z_{1-\alpha/2}) \ge \max\left\{1 - \frac{1}{z_{1-\alpha/2}^2}, 0\right\}$$

where $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile of N(0,1), and this lower bound is tight.

Target Coverage	Worst-Case OLS Coverage
90%	63%
95%	74%

M-estimation

Model

$$Y = X^{\top} \beta + \varepsilon, \quad X, \beta \in \mathbb{R}^d, \quad \varepsilon \perp \!\!\! \perp X, \quad \varepsilon \sim p_0$$

M-estimation

• For a loss function $I: \mathbb{R} \to \mathbb{R}$ with $\psi := -I'$

$$\hat{\beta}_n \in \underset{\beta \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n I(Y_i - X_i^{\top} \beta).$$

Under some regularity conditions, (van der Vaart, 2000, Theorem 5.21),

$$\sqrt{n}(\hat{\beta}_n - \beta_0) \xrightarrow{d} N_d(0, V_{\rho_0}(\psi) \cdot \left[\mathbb{E}(X_1 X_1^\top)\right]^{-1}).$$

Antitonic Score Matching (ASM)

Model

$$Y = X^{\top} \beta + \varepsilon \quad X, \beta \in \mathbb{R}^d, \quad \varepsilon \perp \!\!\! \perp X$$

where $\varepsilon \sim p_0$ and p_0 is unknown.

ASM Estimator

- Constructs a data-driven convex loss function I.
- Minimises the asymptotic variance over all convex I:

$$\sqrt{n}(\hat{\beta}_n^{\mathrm{ASM}} - \beta_0) \xrightarrow{d} N_d(0, i^*(p_0) \cdot \left[\mathbb{E}(X_1 X_1^\top)\right]^{-1})$$

where
$$i^*(p_0) = \min_{l \text{ convex}} V(\psi)$$
.

⁰Feng, O., Kao, Y., Xu, M. and Samworth, R. (2025). *Optimal Convex M-Estimation via Score Matching. Annals of Statistics* (to appear).

Where does the uncertainty come from?

Prediction decomposition

For a new pair (x^*, Y^*) independent of the data \mathcal{D}_n :

$$Y^* - x^{*\top} \hat{\beta}_n^{\mathrm{ASM}} = \underbrace{\varepsilon^*}_{\text{irreducible noise}} + \underbrace{x^{*\top} (\beta_0 - \hat{\beta}_n^{\mathrm{ASM}})}_{\text{estimation error}}.$$

- The first term, ε^* , captures the randomness in Y given X the irreducible noise.
- The second term arises because $\hat{\beta}_n^{\mathrm{ASM}}$ is estimated from finite data the estimation error.

How we model the errors

Two components

1. Estimate the **noise distribution** p_0 from the residuals:

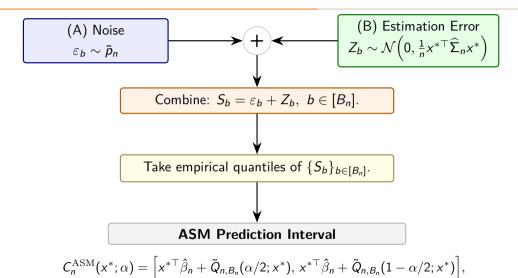
$$\hat{\varepsilon}_i = Y_i - X_i^{\top} \hat{\beta}_n^{ASM}, \quad i \in [n].$$

2. Approximate the **estimation error** using asymptotic normality (Feng et al., 2025):

$$x^{*\top}(\hat{\beta}_n^{\mathrm{ASM}} - \beta_0) \stackrel{d}{\approx} \mathcal{N}\left(0, \frac{1}{n}x^{*\top}\widehat{\Sigma}_n x^*\right).$$

Then, combine samples from these two distributions to form a prediction interval.

Constructing the prediction intervals



where
$$\tilde{Q}_{n,B_n}(\tau;x^*)$$
 is the τ -quantile of $\{S_b\}_{b\in[B_n]}$.

Asymptotic validity of ASM prediction intervals

Theorem (Asymptotic consistency of ASM PIs)

Under regularity conditions, for P_X -almost every $x^* \in \mathbb{R}^d$,

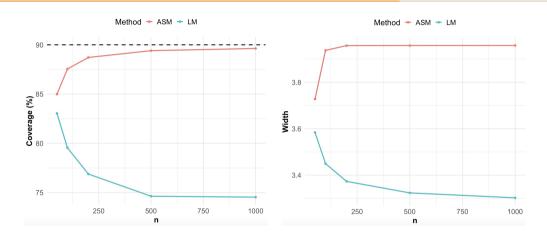
$$\mathbb{P}(Y^* \in C_n^{\mathrm{ASM}}(x^*; \alpha) \mid \mathcal{D}_n, X^* = x^*) \xrightarrow{p} 1 - \alpha.$$

In contrast:

$$\texttt{predict.lm()} \ \Rightarrow \ \mathbb{P}\big(Y^* \in C_n^{\text{OLS}}(x^*;\alpha) \mid \mathcal{D}_n, \, X^* = x^*\big) \xrightarrow{p} \ 1 - \mathbb{P}\big(|\varepsilon| \geq \sigma z_{1-\alpha/2}\big),$$

which can drop to as low as 74% for a 95% PI.

Gaussian Location Mixture (Multimodal Distribution)

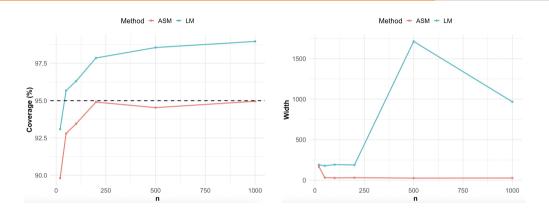


Left: Coverage Right: PI width.

predict.lm() doesn't capture the multimodal structure ⇒ Pls undercover.

12/17

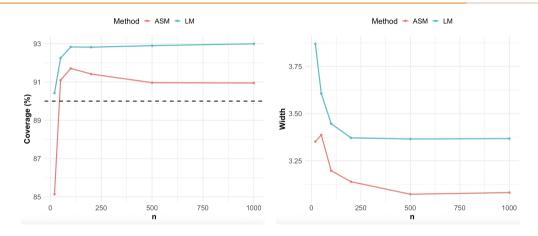
Cauchy Distribution (Heavy Tails)



Left: Coverage. Right: PI width.

predict.lm() tries to estimate the variance of the errors ⇒ PIs overcover.

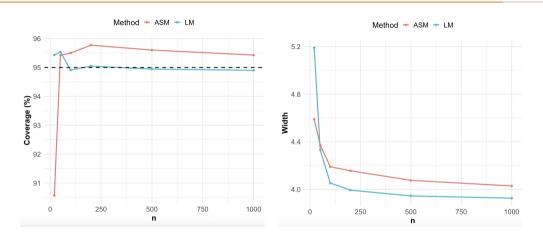
Smoothed Exponential (Skewed Distribution)



Left: Coverage. Right: PI width.

predict.lm() gives symmetric PIs ⇒ PIs are wider than necessary.

Gaussian



Left: Coverage Right: PI width.

• predict.asm() performs comparably to predict.lm().

Summary

Our contribution

- A framework for constructing asymptotically valid prediction intervals under general, non-Gaussian noise.
- predict.asm() a more reliable alternative to predict.lm().

Open questions

- What conditions are required for convergence in expected length of the PIs?
- Over what class of distributions is this convergence uniform?

References

- O. Feng, Y. Kao, M. Xu, and R. Samworth. Optimal convex *M*-estimation via score matching. *Annals of Statistics*, 2025. to appear.
- A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press, Cambridge, 2000.