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Motivation

Einstein’s equations of general relativity:

Rab −
1

2
Rgab + λgab = 8πGTab.

De Sitter space = Maximally symmetric solution of Einstein’s equations with
positive cosmological constant.

Goal: To investigate the existence of a conjectured asymptotic expansion for
the charged scalar field on de Sitter space:

ϕ ∼ φ1 e
−Ht + φ2 e

−2Ht + φ3 e
−3Ht + . . .

Cosmological constant Spacetime metric

Curvature of
spacetime

Energy-momentum
of spacetime
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De Sitter Space

De Sitter space dS4 may be defined as the hyperboloid

|x|2 − x20 =
1

H2

in (4 + 1)-dimensional Minkowski space

η5 = dx20 − d|x|2 − |x|2gS3 .

Defining

x0 =
1

H
sinh(Hα), |x| = 1

H
cosh(Hα),

the metric η5 descends to the metric g on dS4,

g = dα2 − 1

H2
cosh2(Hα)gS3 .

α
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Conformal Compactification

To study the asymptotic structure of a spacetime (M, g) at infinity, we make the
conformal transformation

gab → ĝab = Ω2gab

This brings infinity to a finite region.

Attach to M a boundary I ..= {Ω = 0} and get a new spacetime

M̂= M∪ I

Asymptotic considerations in physical spacetime M

↕
Local differential geometry near I in the rescaled spacetime M̂.

Conformal factor, → 0 asymptotically
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Conformal Compactification of de Sitter Space

g = dα2 − 1

H2
cosh2(Hα)gS3

Make the coordinate transformation

tan
(τ
2

)
= tanh

(
Hα

2

)
so that the metric becomes

g =
1

H2 cos2 τ︸ ︷︷ ︸
Ω−2

(dτ2 − gS3︸ ︷︷ ︸
ĝ

)

where τ ∈ (−π/2, π/2).

I +

I −

τ = +π/2

τ = −π/2

Metric on the
Einstein cylinder

R× S3
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Conformal Compactification of de Sitter Space

g = Ω−2(dτ2 − gS3), Ω = H cos τ

We can attach to (−π/2, π/2)× S3 the boundary

I := {Ω = 0} = {τ = ±π/2}

and identify compactified de Sitter space d̂S4
with [−π/2, π/2]× S3.

The boundary is the union of the spacelike
hypersurfaces

I + =
{
τ = +

π

2

}
, I − =

{
τ = −π

2

}
.

I +

I −

τ = +π/2

τ = −π/2

Future null infinity Past null infinity
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Penrose Diagram for de Sitter Space

g = Ω−2(dτ2− gS3), Ω = H cos τ

If we write the three-sphere metric as

gS3 = dζ2 + (sin2 ζ)gS2

for ζ ∈ [0, π] and quotient out the SO(3)
symmetry group of gS2 , we obtain the
Penrose diagram for dS4.

I

II

III

IV

I +

I −

N
o
rt
h
P
o
le

S
o
u
th

P
o
le

ζ0 π

τ

−π
2

+π
2
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Static Coordinates on de Sitter Space

Static coordinates on dS4 may be
constructed by defining

r =
sin ζ

H cos τ
, tanh(Ht) =

sin τ

cos ζ

for τ ∈ (−π/2, π/2) and ζ ∈ (0, π).

Then

g = F (r)dt2 − F (r)−1dr2 − r2gS2 ,

where F (r) = 1−H2r2.

∂t

t = −∞ t = +∞

t = −∞t = +∞

r = ∞

r = 0r = 0

r = ∞

r
=
1/
H
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The Conformal Wave Equation

For a generic spacetime (M, g), the conformal wave equation is

□ϕ+
1

6
Rϕ = 0.

Consider the conformal transformation ĝab = Ω2gab, and choose

ϕ̂ ..= Ω−1ϕ.

Then the wave equation is conformally invariant:

□ϕ+
1

6
Rϕ = 0 ⇐⇒ □̂ϕ̂+

1

6
R̂ϕ̂ = 0.

Scalar curvature of spacetime∇a∇a = gab∇a∇b

Scalar field
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The Conformal Wave Equation on de Sitter Space

For de Sitter space we have R = 12H2, so that the wave equation on dS4 is

□ϕ+ 2H2ϕ = 0.

Under the rescaling

ĝab = Ω2gab, ϕ̂ = Ω−1ϕ, with Ω = H cos τ,

this becomes the conformal wave equation on the Einstein cylinder,

□̂ϕ̂+ ϕ̂ = 0.

The Conformal Method

Estimates for ϕ̂ on compactified spacetime d̂S4
↓

Estimates for ϕ on physical spacetime dS4
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Decay Estimate

Estimates for ϕ̂ on Einstein cylinder

→ Estimates for ϕ on physical spacetime dS4.

For sufficiently regular initial data (ϕ̂, ∂τ ϕ̂)|Σ̂,
one can show that

|ϕ̂| ≤ C as τ → π/2.

Then since ϕ = Ω ϕ̂,

|ϕ| ≲ Ω as t → +∞.

I +

I −

Σ̂

τ = +π/2

τ = −π/2

Inequality up to a constant
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Decay Estimate in Static Coordinates

In the static coordinates,

Ω =
H

cosh(Ht)

1√
1−H2r2 tanh2(Ht)

∼ He−Ht

√
1−H2r2

as t → +∞,

so that keeping r fixed, we have

|ϕ| ≲ Ω ≲r e
−Ht as t → +∞.
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Asymptotic Decomposition of a Scalar Field

We now know that

ϕ ∼ φ1e
−Ht +O(e−2Ht) as t → +∞.

How can we find the coefficient φ1?

Direct substitution into the conformal wave equation:

□ = F (r)−1∂2
t −

1

r2
∂r(r

2F (r)∂r)−
1

r2
∇2

S2

0 = □̂ϕ̂+ 2H2ϕ̂

∼ e−Ht

[(
F (r)−1 + 2

)
H2φ1 −

1

r2
∂r
(
r2F (r)∂rφ1

)
− 1

r2
∇2

s2φ1

]
as t → +∞.

Reminder:

F (r) = 1−H2r2
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Asymptotic Decomposition: First Coefficient

Seperating variables by writing φ1 = F− 1
2R1(r)Θ1(ω

(2)), we obtain

∇2
s2Θn + λΘn = 0,

d2R1

dz2
+

dR1

dz

(
2

z

)
+R1

(
− λ

z2
+

1
2 − λ

z + 1
+

1
2λ

z − 1

)
= 0.

where z := Hr. The spherical component is solved by the spherical harmonics
Yl,m.

σ2 + σ + l(l + 1) = 0.

R1,n,m,l = zl
∞∑
k=0

akz
k,

R2,n,m,l = R1,n,m,l log z +
∞∑
k=0

bkz
k−l−1.
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Asymptotic Decomposition

Hence, we have

ϕ ∼
1∑

l=0

l∑
m=−l

α1,m,lR1,n,m,lYl,mF (r)−1/2e−Ht +O(e−2Ht)

= a0F (r)−1/2e−Ht +O(e−2Ht) as t → +∞.

Similarly, we obtain

ϕ ∼
∞∑
n=1

n∑
l=0

l∑
m=−l

αn,m,lR1,n,m,lYl,mF (r)−n/2e−nHt

=
∞∑
n=1

Pn(r)F (r)−n/2e−nHt as t → +∞.

where Pn is a polynomial in Hr of degree n− 1.
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Asymptotic Decomposition of a Scalar Field

We now know that

ϕ ∼ φ1e
−Ht +O(e−2Ht) as t → +∞.

How can we find the coefficient φ1?

Relate derivatives on d̂S4 to derivatives on dS4:

Ω∂ζ ϕ̂ =
∂t

∂ζ
∂tϕ+

∂r

∂ζ
∂rϕ

= rF (r)−1/2 sinh(Ht)∂tϕ+H−1F (r)1/2 cosh(Ht)∂rϕ

Ω∂τ ϕ̂ =
∂t

∂τ
∂tϕ+

∂r

∂τ
∂rϕ − Ω−1(∂τΩ)ϕ

= H−1F (r)−1/2 cosh(Ht)∂tϕ+ rF (r)1/2 sinh(Ht)∂rϕ+ F (r)1/2 sinh(Ht)ϕ

Reminder:

r =
sin ζ

H cos τ

tanh(Ht) =
sin τ

cos ζ
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Asymptotic Decomposition: First Coefficient

Ω∂ζ ϕ̂ = rF (r)−1/2 sinh(Ht)∂tϕ+H−1F (r)1/2 cosh(Ht)∂rϕ

Ω∂τ ϕ̂ = H−1F (r)−1/2 cosh(Ht)∂tϕ+ rF (r)1/2 sinh(Ht)∂rϕ+ F (r)1/2 sinh(Ht)ϕ

For sufficiently regular initial data, ∂ζ ϕ̂ and ∂τ ϕ̂ have continuous limits on I +, so

|Ω∂ζ ϕ̂|, |Ω∂τ ϕ̂| ≲ Ω ≲ e−Ht as t → +∞.

Considering the e−Ht component of ϕ,

φ1
..= eHtϕ,

and taking the limit as t → +∞,

0 ≈ Hr∂tφ1 −H2rφ1 + F∂rφ1,

0 ≈ ∂tφ1 −Hφ1 +HrF∂rφ1 +HFφ1.

Equality at t = +∞

Asymptotic Decomposition of a Scalar Field in de Sitter Space 17 / 20



Asymptotic Decomposition: First Coefficient

0 ≈ Hr∂tφ1 −H2rφ1 + F∂rφ1,

0 ≈ ∂tφ1 −Hφ1 +HrF∂rφ1 +HFφ1

Solving this algebraically, we find that ∂tφ1 ≈ 0, and

H2rφ1 ≈ F (r)∂rφ1.

Solving this ordinary differential equation in r, we obtain

φ1(r) ≈
1√
F (r)

φ1(0).
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Conclusion

The conformal method can be used to study the asymptotic structures of
spacetimes.

We investigated an asymptotic decomposition of a scalar field on de Sitter space:

ϕ ∼ φ1 e
−Ht + φ2 e

−2Ht + φ3 e
−3Ht + . . . as t → ∞.

The coefficients are given by

φn(r) =
a0 + a1r + · · ·+ an−1r

n−1

F (r)n/2
.
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Conclusion

The coefficients φn derived using the conformal method agree with

• Calculations using quasinormal modes on dS4,

• Direct solution of the PDEs derived from the conformal wave equation.

The asymptotic expansion using the conformal method also holds for the non-
linear Maxwell-scalar field system,

∇bFab = Im(ϕ̄Daϕ),

DaDaϕ+
1

6
Rϕ = 0.
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Asymptotic Decomposition: Second Coefficient

For the second coefficient, compute

Ω∂2
ζ ϕ̂, Ω∂ζ∂τ ϕ̂, Ω∂2

τ ϕ̂,

and define
φ2

..= e2Ht(ϕ− φ1e
−Ht).

We find that φ2 is also independent of t, and obtain the ODE

F∂2
rφ2 − 4H2r∂rφ2 − 2H2φ2 ≈ 0,

which has solution

φ2(r) ≈
φ2(0) + rφ′

2(0)

F (r)
.
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Asymptotic Decomposition: Third Coefficient

Similarly, for the third coefficient, we compute the third derivatives

Ω∂3
ζ ϕ̂, Ω∂2

ζ∂τ ϕ̂, Ω∂ζ∂
2
τ ϕ̂ Ω∂3

τ ϕ̂,

and find that

φ3(r) ≈
φ3(0) + rφ′

3(0) + r2φ′′
3(0)

F (r)3/2
.

We thus have the asymptotic decomposition

ϕ ∼ φ1 e
−Ht + φ2 e

−2Ht + φ3 e
−3Ht + . . .

∼ φ1(0)

F (r)1/2
e−Ht +

φ2(0) + rφ′
2(0)

F (r)
e−2Ht +

φ3(0) + rφ′
3(0) + r2φ′′

3(0)

F (r)3/2
e−3Ht + . . .
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