Asymptotic Decomposition of a Scalar Field in de Sitter Space

Ryan Wong

in collaboration with Louis Strehlow and Eliza Somerville

Supervisor: Dr. Grigalius Taujanskas

14 October 2024

Motivation

Einstein's equations of general relativity:

De Sitter space = Maximally symmetric solution of Einstein's equations with positive cosmological constant.

Goal: To investigate the existence of a conjectured asymptotic expansion for the charged scalar field on de Sitter space:

$$\phi \sim \varphi_1 e^{-Ht} + \varphi_2 e^{-2Ht} + \varphi_3 e^{-3Ht} + \dots$$

De Sitter Space

De Sitter space dS_4 may be defined as the hyperboloid

$$|x|^2 - x_0^2 = \frac{1}{H^2}$$

in (4+1)-dimensional Minkowski space

$$\eta_5 = \mathrm{d}x_0^2 - \mathrm{d}|x|^2 - |x|^2 g_{\mathbb{S}^3}.$$

Defining

$$x_0 = \frac{1}{H}\sinh(H\alpha), \qquad |x| = \frac{1}{H}\cosh(H\alpha),$$

the metric η_5 descends to the metric g on dS₄,

$$g = \mathrm{d}\alpha^2 - \frac{1}{H^2} \cosh^2(H\alpha) g_{\mathbb{S}^3}.$$

Asymptotic Decomposition of a Scalar Field in de Sitter Space

Conformal Compactification

To study the asymptotic structure of a spacetime (\mathcal{M}, g) at infinity, we make the *conformal transformation*

$$g_{ab} \rightarrow \hat{g}_{ab} = \Omega^2 g_{ab}$$

 \swarrow Conformal factor, $\rightarrow 0$ asymptotically

This brings infinity to a finite region.

Attach to \mathcal{M} a boundary $\mathscr{I} := \{\Omega = 0\}$ and get a new spacetime

 $\hat{\mathscr{M}}=\mathscr{M}\cup\mathscr{I}$

Asymptotic considerations in physical spacetime \mathcal{M} \uparrow Local differential geometry near \mathscr{I} in the rescaled spacetime $\hat{\mathcal{M}}$.

Conformal Compactification of de Sitter Space

$$g = \mathrm{d}\alpha^2 - \frac{1}{H^2} \cosh^2(H\alpha) g_{\mathbb{S}^3}$$

Make the coordinate transformation

$$\tan\left(\frac{\tau}{2}\right) = \tanh\left(\frac{H\alpha}{2}\right)$$

so that the metric becomes

$$g = \underbrace{\frac{1}{\underline{H^2 \cos^2 \tau}}}_{\Omega^{-2}} \underbrace{(\underbrace{\mathrm{d}\tau^2 - g_{\mathbb{S}^3}}_{\hat{g}})}_{\uparrow}$$

where $\tau \in (-\pi/2, \pi/2)$. Metric on the
Einstein cylinder
 $\mathbb{R} \times \mathbb{S}^3$

Conformal Compactification of de Sitter Space

$$g = \Omega^{-2} (\mathrm{d}\tau^2 - g_{\mathbb{S}^3}), \quad \Omega = H \cos \tau$$

We can attach to $(-\pi/2, \pi/2) \times \mathbb{S}^3$ the boundary

$$\mathscr{I} \coloneqq \{\Omega = 0\} = \{\tau = \pm \pi/2\}$$

and identify compactified de Sitter space \widehat{dS}_4 with $[-\pi/2, \pi/2] \times \mathbb{S}^3$.

The boundary is the union of the spacelike hypersurfaces

$$\mathscr{I}^{+} = \left\{ \tau = +\frac{\pi}{2} \right\}, \qquad \mathscr{I}^{-} = \left\{ \tau = -\frac{\pi}{2} \right\}.$$

Future null infinity Past null infinity

Penrose Diagram for de Sitter Space

$$g = \Omega^{-2} (\mathrm{d}\tau^2 - g_{\mathbb{S}^3}), \quad \Omega = H \cos \tau$$

If we write the three-sphere metric as

$$g_{\mathbb{S}^3} = \mathrm{d}\zeta^2 + (\sin^2\zeta)g_{\mathbb{S}^2}$$

for $\zeta \in [0, \pi]$ and quotient out the SO(3) symmetry group of $g_{\mathbb{S}^2}$, we obtain the Penrose diagram for dS₄.

Static Coordinates on de Sitter Space

Static coordinates on dS_4 may be constructed by defining

$$r = \frac{\sin \zeta}{H \cos \tau}, \qquad \tanh(Ht) = \frac{\sin \tau}{\cos \zeta}$$
for $\tau \in (-\pi/2, \pi/2)$ and $\zeta \in (0, \pi)$.

Then

$$g = F(r)dt^2 - F(r)^{-1}dr^2 - r^2g_{\mathbb{S}^2},$$

where $F(r) = 1 - H^2 r^2$.

The Conformal Wave Equation

For a generic spacetime (\mathcal{M}, g) , the conformal wave equation is

$$\nabla_a \nabla^a = g^{ab} \nabla_a \nabla_b \xrightarrow{\Box \phi} \frac{1}{6} \frac{\nabla_a \nabla_b}{\nabla_a \nabla_b} \xrightarrow{\Box \phi} \frac{\nabla_a \nabla^a}{\nabla_b} \frac{\nabla_a \nabla_b}{\nabla_a \nabla_b} \xrightarrow{\Box \phi} \frac{\nabla_a \nabla_b}{\nabla_a \nabla_b} \frac{\nabla_a \nabla_b}{\nabla_a \nabla_b} \xrightarrow{\Box \phi} \frac{\nabla_a \nabla_b}{\nabla_a \nabla_b} \frac{\nabla_b \nabla_b}{\nabla_b \nabla_b} \frac{\nabla_b \nabla_b}{\nabla_b} \frac{\nabla_b \nabla_b}{\nabla_b} \frac{\nabla_b \nabla_b}{\nabla_b \nabla_b} \frac{\nabla_b \nabla_b}{\nabla_b} \frac{\nabla_b \nabla_b} \nabla_b} \frac{\nabla_b \nabla_b}{\nabla_b} \frac{\nabla_b \nabla_b}{\nabla_b} \frac{\nabla_b \nabla_b}{\nabla_b} \frac{\nabla_b \nabla_b}{\nabla_b} \frac{\nabla_b \nabla_b} \nabla_b} \frac{\nabla_b \nabla_b}{\nabla_b} \frac{\nabla_b \nabla_b} \nabla_b} \frac{\nabla_b \nabla_b} \nabla_b \nabla_b} \frac{\nabla_b \nabla_b} \nabla_b \nabla_b} \frac{\nabla_b \nabla_b} \nabla_b \nabla_b} \frac{\nabla_b \nabla_b} \nabla_b \nabla_b} \frac{\nabla_b \nabla_b} \nabla_b}$$

Consider the conformal transformation $\hat{g}_{ab} = \Omega^2 g_{ab}$, and choose

$$\hat{\phi} := \Omega^{-1} \phi.$$

Then the wave equation is *conformally invariant*:

$$\Box \phi + \frac{1}{6} R \phi = 0 \quad \Longleftrightarrow \quad \hat{\Box} \hat{\phi} + \frac{1}{6} \hat{R} \hat{\phi} = 0.$$

The Conformal Wave Equation on de Sitter Space

For de Sitter space we have $R = 12H^2$, so that the wave equation on dS₄ is

 $\Box \phi + 2H^2 \phi = 0.$

Under the rescaling

$$\hat{g}_{ab} = \Omega^2 g_{ab}, \qquad \hat{\phi} = \Omega^{-1} \phi, \qquad \text{with} \ \ \Omega = H \cos \tau,$$

this becomes the conformal wave equation on the Einstein cylinder,

$$\hat{\Box}\hat{\phi} + \hat{\phi} = 0.$$

 $\begin{array}{c} \hline \mbox{The Conformal Method} \\ \hline \mbox{Estimates for } \hat{\phi} \mbox{ on compactified spacetime } \widehat{dS}_4 \\ \downarrow \\ \hline \mbox{Estimates for } \phi \mbox{ on physical spacetime } dS_4 \end{array}$

Asymptotic Decomposition of a Scalar Field in de Sitter Space

Decay Estimate

Estimates for $\hat{\phi}$ on Einstein cylinder \rightarrow Estimates for ϕ on physical spacetime dS₄.

For sufficiently regular initial data $(\hat{\phi}, \partial_{\tau} \hat{\phi})|_{\hat{\Sigma}}$, one can show that

$$|\hat{\phi}| \leq C$$
 as $\tau \to \pi/2$.

Then since $\phi = \Omega \hat{\phi}$,

$$|\phi| \lesssim \Omega$$
 as $t \to +\infty$.
Inequality up to a constant

In the static coordinates,

$$\Omega = \frac{H}{\cosh(Ht)} \frac{1}{\sqrt{1 - H^2 r^2 \tanh^2(Ht)}} \sim \frac{H e^{-Ht}}{\sqrt{1 - H^2 r^2}} \text{ as } t \to +\infty,$$

so that keeping r fixed, we have

$$|\phi| \lesssim \Omega \lesssim_r e^{-Ht}$$
 as $t \to +\infty$.

Asymptotic Decomposition of a Scalar Field

We now know that

$$\phi \sim \varphi_1 e^{-Ht} + \mathcal{O}(e^{-2Ht}) \quad \text{as} \ t \to +\infty.$$

How can we find the coefficient φ_1 ?

Direct substitution into the conformal wave equation:

$$\Box = F(r)^{-1}\partial_t^2 - \frac{1}{r^2}\partial_r(r^2F(r)\partial_r) - \frac{1}{r^2}\nabla_{\mathbb{S}^2}^2 \qquad \text{Reminder:} \\ f(r) = 1 - H^2r^2 \\ 0 = \hat{\Box}\hat{\phi} + 2H^2\hat{\phi} \\ \sim e^{-Ht} \left[\left(F(r)^{-1} + 2\right)H^2\varphi_1 - \frac{1}{r^2}\partial_r\left(r^2F(r)\partial_r\varphi_1\right) - \frac{1}{r^2}\nabla_{\mathfrak{s}_2}^2\varphi_1 \right] \\ \text{as } t \to +\infty. \end{cases}$$

Asymptotic Decomposition: First Coefficient

Separating variables by writing $\varphi_1 = F^{-\frac{1}{2}} R_1(r) \Theta_1(\omega^{(2)})$, we obtain

$$\nabla_{\mathfrak{s}_2}^2 \Theta_n + \lambda \Theta_n = 0,$$

$$\frac{\mathrm{d}^2 R_1}{\mathrm{d}z^2} + \frac{\mathrm{d}R_1}{\mathrm{d}z} \left(\frac{2}{z}\right) + R_1 \left(-\frac{\lambda}{z^2} + \frac{\frac{1}{2} - \lambda}{z+1} + \frac{\frac{1}{2}\lambda}{z-1}\right) = 0.$$

where z := Hr. The spherical component is solved by the spherical harmonics $Y_{l,m}$.

$$\sigma^2 + \sigma + l(l+1) = 0.$$

$$R_{1,n,m,l} = z^l \sum_{k=0}^{\infty} a_k z^k,$$

$$R_{2,n,m,l} = R_{1,n,m,l} \log z + \sum_{k=0}^{\infty} b_k z^{k-l-1}.$$

Asymptotic Decomposition

Hence, we have

$$\phi \sim \sum_{l=0}^{1} \sum_{m=-l}^{l} \alpha_{1,m,l} R_{1,n,m,l} Y_{l,m} F(r)^{-1/2} e^{-Ht} + \mathcal{O}(e^{-2Ht})$$
$$= a_0 F(r)^{-1/2} e^{-Ht} + \mathcal{O}(e^{-2Ht}) \quad \text{as } t \to +\infty.$$

Similarly, we obtain

$$\phi \sim \sum_{n=1}^{\infty} \sum_{l=0}^{n} \sum_{m=-l}^{l} \alpha_{n,m,l} R_{1,n,m,l} Y_{l,m} F(r)^{-n/2} e^{-nHt}$$
$$= \sum_{n=1}^{\infty} P_n(r) F(r)^{-n/2} e^{-nHt} \quad \text{as } t \to +\infty.$$

where P_n is a polynomial in Hr of degree n-1.

Asymptotic Decomposition of a Scalar Field in de Sitter Space

Asymptotic Decomposition of a Scalar Field

We now know that

$$\phi \sim \varphi_1 e^{-Ht} + \mathcal{O}(e^{-2Ht}) \quad \text{as} \ t \to +\infty.$$

How can we find the coefficient φ_1 ?

Relate derivatives on \widehat{dS}_4 to derivatives on dS_4 :

$$\Omega \partial_{\zeta} \hat{\phi} = \frac{\partial t}{\partial \zeta} \partial_{t} \phi + \frac{\partial r}{\partial \zeta} \partial_{r} \phi$$

= $rF(r)^{-1/2} \sinh(Ht) \partial_{t} \phi + H^{-1}F(r)^{1/2} \cosh(Ht) \partial_{r} \phi$
$$\Omega \partial_{\tau} \hat{\phi} = \frac{\partial t}{\partial \tau} \partial_{t} \phi + \frac{\partial r}{\partial \tau} \partial_{r} \phi - \Omega^{-1} (\partial_{\tau} \Omega) \phi$$

 $= H^{-1}F(r)^{-1/2}\cosh(Ht)\partial_t\phi + rF(r)^{1/2}\sinh(Ht)\partial_r\phi + F(r)^{1/2}\sinh(Ht)\phi$

$$t = \frac{\sin \zeta}{H \cos \tau}$$
$$t = \frac{\sin \tau}{\cos \zeta}$$

Reminder

Asymptotic Decomposition: First Coefficient

$$\Omega \partial_{\zeta} \hat{\phi} = rF(r)^{-1/2} \sinh(Ht) \partial_t \phi + H^{-1}F(r)^{1/2} \cosh(Ht) \partial_r \phi$$
$$\Omega \partial_{\tau} \hat{\phi} = H^{-1}F(r)^{-1/2} \cosh(Ht) \partial_t \phi + rF(r)^{1/2} \sinh(Ht) \partial_r \phi + F(r)^{1/2} \sinh(Ht) \phi$$

For sufficiently regular initial data, $\partial_{\zeta}\hat{\phi}$ and $\partial_{\tau}\hat{\phi}$ have continuous limits on \mathscr{I}^+ , so

$$|\Omega \partial_{\zeta} \hat{\phi}|, |\Omega \partial_{\tau} \hat{\phi}| \lesssim \Omega \lesssim \mathrm{e}^{-Ht} \quad \text{ as } t \to +\infty.$$

Considering the e^{-Ht} component of ϕ ,

$$\varphi_1 := \mathrm{e}^{Ht} \phi,$$

and taking the limit as $t \to +\infty$,

$$0 \approx Hr\partial_t\varphi_1 - H^2r\varphi_1 + F\partial_r\varphi_1,$$

$$0 \approx \partial_t\varphi_1 - H\varphi_1 + HrF\partial_r\varphi_1 + HF\varphi_1.$$

$$\swarrow \text{Equality at } t = +\infty$$

Asymptotic Decomposition of a Scalar Field in de Sitter Space

Asymptotic Decomposition: First Coefficient

$$0 \approx Hr\partial_t\varphi_1 - H^2r\varphi_1 + F\partial_r\varphi_1,$$

$$0 \approx \partial_t\varphi_1 - H\varphi_1 + HrF\partial_r\varphi_1 + HF\varphi_1$$

Solving this algebraically, we find that $\partial_t \varphi_1 \approx 0$, and

 $H^2 r \varphi_1 \approx F(r) \partial_r \varphi_1.$

Solving this ordinary differential equation in r, we obtain

$$\varphi_1(r) \approx \frac{1}{\sqrt{F(r)}} \varphi_1(0).$$

The conformal method can be used to study the asymptotic structures of spacetimes.

We investigated an asymptotic decomposition of a scalar field on de Sitter space:

$$\phi \sim \varphi_1 e^{-Ht} + \varphi_2 e^{-2Ht} + \varphi_3 e^{-3Ht} + \dots$$
 as $t \to \infty$

The coefficients are given by

$$\varphi_n(r) = \frac{a_0 + a_1 r + \dots + a_{n-1} r^{n-1}}{F(r)^{n/2}}.$$

The coefficients φ_n derived using the conformal method agree with

- Calculations using quasinormal modes on dS₄,
- Direct solution of the PDEs derived from the conformal wave equation.

The asymptotic expansion using the conformal method also holds for the nonlinear Maxwell-scalar field system,

$$\nabla^b F_{ab} = \operatorname{Im}(\bar{\phi} D_a \phi),$$
$$D^a D_a \phi + \frac{1}{6} R \phi = 0.$$

References

- Grigalius Taujanskas. 'Conformal scattering of the Maxwell-scalar field system on de Sitter space'. *Journal of Hyperbolic Differential Equations* 16.04 (Dec. 2019), pp. 743–791. arXiv: 1809.01559 [math.AP].
- Jean-Philippe Nicolas. 'The conformal approach to asymptotic analysis'. (2015). arXiv: 1508.02592 [gr-qc].
- Thierry Aubin. Some Nonlinear Problems in Riemannian Geometry. Springer-Verlag, 1998.
- Roger Penrose and Wolfgang Rindler. *Spinors and Space-Time*. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1984.
- Peter Hintz and YuQing Xie. 'Quasinormal modes and dual resonant states on de Sitter space'. *Physical Review D* 104.6 (Sept. 2021). arXiv: 2104.11810 [gr-qc].

Asymptotic Decomposition: Second Coefficient

For the second coefficient, compute

$$\Omega \partial_{\zeta}^2 \hat{\phi}, \qquad \Omega \partial_{\zeta} \partial_{\tau} \hat{\phi}, \qquad \Omega \partial_{\tau}^2 \hat{\phi},$$

and define

$$\varphi_2 := \mathrm{e}^{2Ht} (\phi - \varphi_1 \mathrm{e}^{-Ht}).$$

We find that φ_2 is also independent of t, and obtain the ODE

$$F\partial_r^2\varphi_2 - 4H^2r\partial_r\varphi_2 - 2H^2\varphi_2 \approx 0,$$

which has solution

$$\varphi_2(r) \approx \frac{\varphi_2(0) + r\varphi_2'(0)}{F(r)}.$$

Asymptotic Decomposition: Third Coefficient

Similarly, for the third coefficient, we compute the third derivatives

$$\Omega \partial_\zeta^3 \hat{\phi}, \qquad \Omega \partial_\zeta^2 \partial_\tau \hat{\phi}, \qquad \Omega \partial_\zeta \partial_\tau^2 \hat{\phi} \qquad \Omega \partial_\tau^3 \hat{\phi},$$

and find that

$$\varphi_3(r) \approx \frac{\varphi_3(0) + r\varphi_3'(0) + r^2\varphi_3''(0)}{F(r)^{3/2}}.$$

We thus have the asymptotic decomposition

$$\phi \sim \varphi_1 e^{-Ht} + \varphi_2 e^{-2Ht} + \varphi_3 e^{-3Ht} + \dots$$
$$\sim \frac{\varphi_1(0)}{F(r)^{1/2}} e^{-Ht} + \frac{\varphi_2(0) + r\varphi_2'(0)}{F(r)} e^{-2Ht} + \frac{\varphi_3(0) + r\varphi_3'(0) + r^2\varphi_3''(0)}{F(r)^{3/2}} e^{-3Ht} + \dots$$