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Random Growing Trees

Network archaeology (Haigh, 1970; Shah & Zaman, 2011; Bubeck,
Devroye & Lugosi, 2017)

Definition (Uniform Attachment Model)

A family of random trees (i.e. family of rv’s whose values are trees)
{Tn}n≥1 is said to follow a uniform attachment model if |Tn| = n,
V (Tn) ⊆ V (Tn+1) for all n ∈ N, and, if we write V (Tn) = {v1, . . . , vn},
then P((vi , vn+1) ∈ E (Tn+1)) = 1/n for each i ≤ n. Also, each time the
attachment choices should be independent from the previous ones.
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Centrality of Vertices in a Tree

Definition (Centrality)

Given a finite tree T and a vertex v ∈ V (T ). Consider the forest formed
by deleting this vertex. The centrality of this vertex is then

ψT (v) := The Size of the Largest Tree in the Forest Formed.

Definition (Centroid)

Given a finite tree T and a v ∈ V (T ). v is called a centroid of T if it
minimises ψT (v).

Ryan Hu (St. John’s College) Probability Bounds on Persistent Centroids October 14, 2024 3 / 12



Persistence of Centroid in Uniform Attachment

Theorem (Loh, Jog, 2016)

Let (Tn) be a family of random growing trees given by the uniform
attachment. Then, with probability 1, there exists a N ∈ N and a
v ∈

⋃
n V (Tn) such that for all n ≥ N, v is the centroid of Tn.
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Probability Bounds on Persistent Centroid Appearance

Definition

Let (Tn) be a family of random growing trees given by uniform
attachment. We define the random variable

T := min{N ∈ N : there exists k ∈ N s.t. C(Tn) = {vk} for all n ≥ N}.

Note that by the above theorem, this random variable is almost surely
well-defined.
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Probability Bounds on Persistent Centroid Appearance

Goal

Our goal is to find an explicit expression N(ε) such that

P(T > N(ε)) ≤ ε.
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Understanding Centrality Function

Lemma

Let T be a finite tree. Then T has at most 2 centroids. And, if T has 2
centroids, then these 2 centroids are connected by an edge.
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Analysis of the Event {T > N}

Start by noting that, whenever there is a change in centroid, there
must be a stage in between at which there’s two centroids. Hence,

{T > N} =
∞⋃

k=N

{|C(Tk)| = 2}.

The union bound of the above is not enough, instead, consider the
union bound given by

{T > N} =
∞⋃
j=2

{there exists k ≥ N, i < j s.t. C(Tk) = {vi , vj}}.

It’s easy to track (ψTk
(vi ), ψTk

(vj)) as k evolves, it’s just a Polya urn!
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de Finetti’s Theorem

Definition

A sequence of random variables (Xi ) is said to be exchangeable if

(X1, . . . ,Xn)
d
= (Xπ(1) . . . , xπ(n)) for all n ∈ N.

Theorem (de Finetti, 1931)

A sequence of Bernoulli random variables (Xi )i≥1 is exchangeable if and
only if there exists a distribution function F on [0, 1] such that for all
n ∈ N,

P(X1 = x1, . . . ,Xn = xn) =

∫ 1

0
θ
∑n

i=1 xi (1− θ)n−
∑n

i=1 xi dF (θ).
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de Finetti’s Theorem

Definition (Polya Urn)

A Polya urn puts x white and y black balls into an urn. At each step, one
ball is drawn uniformly at random from the urn, and its color observed; it
is then returned in the urn, and an additional ball of the same color is
added to the urn.

Theorem (Janson, 2019)

Let (Xn,Yn) be the Polya urn model with X0 = a,Y0 = b. Then, there
exists a rv W ∼ beta(a, b) with Xn

Xn+Yn
→ W almost surely. And, for each

w ∈ [0, 1], conditioning on W = w , Xn = X0 +
∑n

k=1Qk with

Qk
i.i.d.∼ Bernoulli(w).
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Law of Iterated Logarithm Bounds

Law of Iterated Logarithm is a classical result in probability theory. It
says

lim sup
n→∞

|
∑n

k=1 Yk |√
2n log log n

= 1 a.s.,

where (Yk) are i.i.d. rvs with zero mean and unit variances.

Recent results in sequential hypothesis testing use a non-asymptotic
result (Balasubramani & Ramdas, 2016):

Theorem

Let Qk
i.i.d.∼ Bernoulli(w), ηt = η0 +

∑t
k=1 (−1)Qk . Then, with probability

≥ 1− δ, for all t ≥ C1
w(1−w) log(4/δ) uniformly, we have

|ηt−(2w−1)t| ≤
√
C2w(1− w)t(2 log log(C3w(1− w)t/|ηt |) + log(2/δ)),

where C1,C2,C3 are some explicit constants.
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Conclusion

Analyzed time to persistence for centroid in uniform attachment trees.

Results rely on convergence in Polya urns (de Finetti’s Theorem),
finite-time Law of the Iterated Logarithm.

Some details still to be worked out.

Future work: Preferential attachment trees, diffusion in d-regular
trees.
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