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PDEs we want to consider

We care about evolutionary PDEs of the form:

∂ρ

∂t
= ∇ ·

(
ρ∇

(
U ′(ρ) + V +W ∗ ρ

))

Here, the quantities are as follows:

x is a spatial variable in Rd

t is a time variable in [0,∞)

ρ(t, x) is a time-dependent (non-negative) probability density on Rd

U : R+ → R is a density of internal energy

V : Rd → R is a confinement potential

W : Rd → R is an interaction potential, which we assume to be
symmetric: W (z) = W (−z)
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The Porous Medium Equation

The Porous Medium Equation (PME) is the following:

∂ρ

∂t
= ∆ρm (PME)

For simplicity, we’ll only consider the case m > 1 in this talk.
This equation arises as the general PDE we described before by considering

U(s) =
1

m − 1
sm, V (x) = 0, W = 0

However, since we will need V to be strictly convex, we will introduce a
change of variables: set λ = 1

d(m−1)+2 , x̃ = xt−λ, t̃ = ln t, and define

ρ̂
(
t̃, x̃

)
= edλt̃ρ(t, x) = tdλρ(t, x)
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The rescaled PME

Dropping the ∼’s, the PME becomes:

∂ρ̂

∂t
= ∆ρ̂m + λ∇ · (ρ̂x) = 0 (PME-R)

This now arises by considering

U(s) =
1

m − 1
sm, V (x) =

1

2
λ|x |2, W = 0

Clearly now V is strictly convex, with D2V = λ Id, λ > 0. We also claim
that all the other assumptions we need for the result hold for these specific
choices of U,V ,W .
Thus, our convergence results (which we’ll introduce later) will hold for
this equation.
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Gradient flows in Rn

Definition (Gradient flow in Rn)

Let F : Rn → R be a smooth function. A gradient flow of F is a curve
given by:

ẋ(t) = −∇F (x(t))

This is also sometimes called the steepest descent curve of F .
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ẋ(t) = −∇F (x(t))

This is also sometimes called the steepest descent curve of F .

Mara-Ioana Postolache Otto Calculus and Gradient Flows on the Infinite-Dimensional Manifold of Probability MeasuresOctober 14, 2024 9 / 23



Gradient flows in Rn

Definition (Gradient flow in Rn)

Let F : Rn → R be a smooth function. A gradient flow of F is a curve
given by:
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The manifold of probability densities

Consider the set:

M = Pa
2 (Rd) =

{
ρ : Rd → [0,∞)

∣∣∣∣ ∫ ρ = 1,

∫
|x |2 dρ(x) < ∞

}

By handwaving, we can consider this as an infinite-dimensional version of
a manifold, with the tangent space at any point given by

TρM =

{
s : Rd → R

∣∣∣∣ ∫ s = 0

}
This makes sense since for any curve ρ(t) on M, the derivative dρ

dt must
satisfy ∫

dρ

dt
=

d

dt

∫
ρ = 0

Mara-Ioana Postolache Otto Calculus and Gradient Flows on the Infinite-Dimensional Manifold of Probability MeasuresOctober 14, 2024 10 / 23



The manifold of probability densities

Consider the set:

M = Pa
2 (Rd) =

{
ρ : Rd → [0,∞)

∣∣∣∣ ∫ ρ = 1,

∫
|x |2 dρ(x) < ∞

}
By handwaving, we can consider this as an infinite-dimensional version of
a manifold, with the tangent space at any point given by

TρM =

{
s : Rd → R

∣∣∣∣ ∫ s = 0

}

This makes sense since for any curve ρ(t) on M, the derivative dρ
dt must

satisfy ∫
dρ

dt
=

d

dt

∫
ρ = 0

Mara-Ioana Postolache Otto Calculus and Gradient Flows on the Infinite-Dimensional Manifold of Probability MeasuresOctober 14, 2024 10 / 23



The manifold of probability densities

Consider the set:

M = Pa
2 (Rd) =

{
ρ : Rd → [0,∞)

∣∣∣∣ ∫ ρ = 1,

∫
|x |2 dρ(x) < ∞

}
By handwaving, we can consider this as an infinite-dimensional version of
a manifold, with the tangent space at any point given by

TρM =

{
s : Rd → R

∣∣∣∣ ∫ s = 0

}
This makes sense since for any curve ρ(t) on M, the derivative dρ

dt must
satisfy ∫

dρ

dt
=

d

dt

∫
ρ = 0

Mara-Ioana Postolache Otto Calculus and Gradient Flows on the Infinite-Dimensional Manifold of Probability MeasuresOctober 14, 2024 10 / 23



The tangent space revisited and the metric

With some further handwaving, we use the equation s = −∇ · (ρ∇p)
identify the tangent space at ρ with the following space:

TρM =
{
p : Rd → R

}
/ ∼

where p1 ∼ p2 if and only if they differ by a constant.

We can now define a Riemannian-like metric on the ”manifold” M by:

gρ(s1, s2) =

∫
Rd

∇p1 · ∇p2 dρ

This metric is defined in such a way that we have the relation:

gρ(s1, s2) =

∫
Rd

s1p2 dx =

∫
Rd

s2p1 dx
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Gradient flows (M, g)

Definition (Gradient flow on a manifold)

Let F : M → R be a smooth functional. A gradient flow of F is a curve
given by the evolution equation:

γ̇(t) = − gradF |γ(t)

The gradient of F is defined as the unique vector field along γ such that

gγ (gradF |γ , s) = diff F |γ .s ∀vector fields s along γ

and hence the definition of gradient flow can be re-written as:

gγ (γ̇(t), s) = − diff F |γ .s ∀vector fields s along γ
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The free energy functional

It turns out that solutions to the PDE

∂ρ

∂t
= ∇ ·

(
ρ∇

(
U ′(ρ) + V +W ∗ ρ

))
(1)

are the same as gradient flows on M of the following functional:

Definition (Free energy functional)

The free energy functional of the density ρ is given by

F (ρ) =

∫
Rd

U(ρ)dx +

∫
Rd

V (x) dρ(x) +
1

2

∫
Rd×Rd

W (x − y) dρ(x)dρ(y)
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Proof of being a gradient flow

By IBP and differentiation under the integral sign, we have

diff F |ρ .s = −
∫
Rd

∇ ·
(
ρ∇

(
U ′(ρ) + V +W ∗ ρ

))
p dx ∀v.f. s along ρ

Thus, using the formula gρ(s1, s2) =
∫
Rd s1p2 dx , the gradient flow

equation

gγ

(
dρ

dt
, s

)
= − diff F |ρ .s ∀vector fields s along ρ

becomes∫
Rd

dρ

dt
p dx =

∫
Rd

∇ ·
(
ρ∇

(
U ′(ρ) + V +W ∗ ρ

))
p dx ∀p

But since p is arbitrary, this is equivalent to the PDE we started with.
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Geodesics and the Wasserstein distance

It is known that between any two points ρ0 and ρ1 on the manifold
(M, g), there is a unique geodesic connecting them, which we denote by
ρs (for s ∈ [0, 1]).

Furthermore, the most important property of the geometric structure we
introduced is the fact that the geodesic distance (i.e. the length of ρs) on
(M, g) recovers a known quantity, namely the Wassterstein distance W2.
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Statement of the convergence result

Assume that a number of small assumptions on the convexity of U and W
and the strict convexity of V (i.e. there exists some λ > 0 such that
D2V ≥ λ Id) are satisfied.
Let ρ∞ be the (unique) steady-state (i.e. time-independent) solution of
the PDE, and denote F (ρ|ρ∞) = F (ρ)− F (ρ∞).
Then any solution ρ(t) of the PDE satisfies the following convergence
results:

F (ρ|ρ∞) ≤ e−2λtF (ρ0|ρ∞)

and

W2(ρ(t), ρ∞) ≤ e−λt

√
2F (ρ0|ρ∞)

λ

So, under the well-known Wasserstein distance, any solution of the PDE
converges exponentially (in time) to the steady state.
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Idea of the proof

Key fact

Under certain convexity assumptions on the potentials U,V ,W , the free
energy functional F becomes uniformly convex on M i.e. there exists
some λ > 0 such that

d2F (ρs)

ds2
≥ λW 2

2 (ρ0, ρ1)

for any geodesic ρs between ρ0 and ρ1.

More precisely, we can show that, assuming U obeys a convexity under
rescaling property and that W is a convex function, the terms of the
functional F which correspond to U and W are convex, while assuming
that V is uniformly convex then implies uniform convexity of the
corresponding term in F , and thus of F itself.
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d2F (ρs)

ds2
≥ λW 2

2 (ρ0, ρ1)
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Idea of the proof (cont)

We will not go into details of why a minimiser of F exists, but we note
that F being uniformly convex means that any minimiser must be unique.
We denote it by ρ∞.

Proof (Uniqueness).

If ρ0 and ρ1 are two distinct minimisers, then s 7→ F (ρs) is uniformly
convex on [0, 1] and achieves it’s minimum at the two endpoints, which is
nonsense - contradiction!

The remaining of the proof relies on Taylor expanding F (ρ) to second
order around ρ∞ and using the uniform convexity of F to bound the
second derivative of F .
This leads us to a bound on the first derivative:

− d

dt
F (ρ(t)|ρ∞) ≥ 2λF (ρ|ρ∞)

which, used with Gronwall’s inequality, gives us the desired exponential
convergence in F .
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Closing remarks

The geometric picture inspired a gradient flow approach to the PDE,
leading us to conclude convergence results from bounds of the
Hessians of a functional.

However, the definition of (M, g) significantly restricts the type of
PDEs we can consider while keeping the functional F still nice.

When looking at other types of PDEs, such as the Landau equation,
we will need a different structure on the space. Some progress has
been made abstractly, by replacing the Wasserstein distance with a
more complicated distance, but (as far as I am aware) this doesn’t yet
have a nice manifold interpretation.
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Thank you for your attention!

Any questions?
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