Protein Identification using Machine Learning

Supervisor: Bikash Bhandari

Overview

- What is a protein?
- Aims of the project

How The Nanopore Sensor Works

Output From The Sensor

t = time amino acid is in nanopore (translocation time)

T = time sensor is switched on for

Generating Synthetic Data

Sample from these distributions

Adjustments:

- 1. Non-uniform *t*
- 2. Different emission amounts
- 3. Detector Bands

Database of ~19000 human protein sequences Use 100 amino-acid-length fragments

Single Amino Acid Method

Machine Learning Model for Individual Amino Acids

Classification of the signals from the 20 different amino acids using a fully connected neural network:

• The predicted acid is one with maximum posterior probability:

Database Lookup

- Generate a predicted sequence using the machine learning model.
- Compare to a database of known protein sequences
- Probability required

Results

t =time amino acid is in nanopore (translocation time)

T = time sensor is switched on for

Machine Learning Model for Full Sequences

- We now have a classification model on all 19,200 different sequences (of length 100).
- 5 training data and 1 testing data per sequence
- Results for T = t = 40:

Model Type	Accuracy (%)
Linear Neural Network	43.8
LSTM Model	84.3
Vision Transformer	97.2

t = time amino acid is in nanopore (translocation time) T = time sensor is switched on for

Results

t = time amino acid is in nanopore (translocation time) T = time sensor is switched on for

Conclusions

Individual Acid Method

Full Sequence Method

Advantages:

Increased

accuracy

Easier to extend

to non-uniform *t*

Disadvantages:

Model must be database

retrained on each

Disadvantages:

Two sources of uncertainty (Neural Network and Database Lookup)

Advantages:

Applicable to sequencing unknown proteins

Further Work

- Improve the accuracy of the models
- Translocation time, *t*, is not known
- Full length protein sequences
- Insertions/Deletions

