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Overview

Algebraic geometry: the study of spaces defined by polynomial eqns.

1. Intersection theory.

2. Mg ,n, the moduli space of curves.

3. Intersection theory revisited.

4. The double-double ramification cycle.

Ultimately, compute intersection numbers:
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varieties = spaces.

curves = 1-dim spaces

= Riemann surfaces.



Intersection Theory

Bézout’s Theorem (1779):
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Pairing: curves⇥ curves
intersection������! Z is multiplicative.
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cubic quadric 6 points



Intersection Theory
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Problems:

1. Less intersections

2. Tangencies

3. Parallel asymptotes

4. Self-intersections



Intersection Theory

Bézout on P2: (curves/⇠)⇥ (curves/⇠) \-pairing�����! Z.

Int. theory: product structure on (subvarieties/rational equivalence).
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Problems:

1. Less intersections

2. Tangencies

3. Parallel asymptotes

4. Self-intersections

Solutions:

1. R alg. closure�������! C

2. Count multiplicities

3. C2 compactify������! CP2

4. Allow “deformations”:h i
=
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The Moduli Space of Curves

Mg ,n = moduli (param.) space of smooth/nodal stable curves
of genus g with n marked points.

• Concept: Riemann (1857). dim = 3g � 3 + n.

• Existence: Deligne-Mumford (1969).

Schematic picture: M1,2.

⇥ ?

⇥ ?

⇥
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genus-0 curve = P1 ⇠ sphere

genus-1 curve ⇠ torus



Moduli Spaces: A Toy Model

What is the collection of all triangles (up to similarity)?

{triangles} =

The moduli space of triangles behaves like a 2-dimensional stack!
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Moduli Spaces: A Toy Model

What is the collection of all triangles? )

{triangles} =
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Problems:

1. Automorphisms

2. Some limits do not exist



Moduli Spaces: A Toy Model

What is the collection of all triangles*?

{triangles*} =

Moduli space of triangles: T ⇡ 2-dimensional algebraic stack.
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Problems:

1. Automorphisms

2. Some limits do not exist

Solutions:

1. Allow finite quotient
singularities (stack)

2. Compactify the space

*including “flat triangles”
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Intersection Theory on Moduli Spaces: A Toy Model

Enumerative problem  ! intersection theory on moduli space:

0

BB@

1

CCA =

3 : 4 : 5

Bézout: #(deg 2 \ deg 4) = 8. Why do we only see 1 solution?

1. C2-symmetry

2. Nonphysical solns: [x :y :z ] = [1 :�3.82:�3.95], [0 :1 :�1]mult. 2
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# triangles that are

1. Right-angled

2. Area = (Perimeter)2

24
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Enumerative Geometry: Intersection Theory on Mg ,n

Enumerating triangles  ! intersection theory on T .

Enumerating curves  ! intersection theory on Mg ,n.

⇥ ?

⇥ ?

⇥?

⇥?
⇥ ?

E.g. “How many rational cubics on P2 pass through 8 given points?”
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Intersection Numbers: Measuring the Shape of Varieties

Given a variety X (e.g. Pn), how do we study its subvarieties Y ?

1. Identify natural subvarieties (e.g. hyperplanes H ⇢ Pn).

2. Understand Y \ (these subvarieties), up to rational equivalence.

If dimY = k , Y \ (k codim-1 subvarieties) = intersection number:
Z

X
[Y ] · [Z1] · . . . · [Zk ] = #(Y \ Z1 \ · · · \ Zk)

↵ 7!
R
X ↵ ·

Q
i [Zi ] is a “test function”: (subvarieties/⇠)! Z..
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Two Examples: Intersection Numbers on Pn
and Pn ⇥ Pm

X = Pn, Y ⇢ X of dimension k :

degY =

Z

Pn
[Y ] · [H]k

degY (and dimY ) determines [Y ]rat-equiv.

X = Pn ⇥ Pm, Y ⇢ X of dimension k : for each a = 0, 1, . . . , k ,

dega,k�a Y =

Z

Pn⇥Pm
[Y ] · [H1]

a · [H2]
k�a

where [H1] = [hyperplane⇥ Pm] and [H2] = [Pn ⇥ hyperplane].

E.g. k = 3: (deg0,3 Y , deg1,2 Y , deg2,1 Y , deg3,0 Y ) determines [Y ].
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Intersection Numbers on Mg ,n

What are the natural classes on X = Mg ,n?

Each Y ⇢Mg ,n may be “tested against” psi classes  1, . . . , n:

Z

Mg,n

[Y ] ·  e1
1 . . . en

n

• Each  i is codim-1.

• Defined by imposing local constraints on tangent vector fields.

These intersection numbers do not uniquely determine [Y ]; even so,
along with other classes, they “detect a lot of its shape”.
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The Double-Double Ramification Cycle

DDR cycle = locus of curves in Mg ,n that:

• admit a map to P2 of a given degree;

• has given tangency orders to axes at marked points.

Why is it interesting?

1. Relates to PDEs.

2. Downstream enumerative applications.

3. The DR cycle (curves C
d :1��! P1 with given zeros/poles) was

well-studied (Janda-Pandharipande-Pixton-Zvonkine, 2016).
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The Shape of the DDR Cycle

My project: compute several DDR intersection numbers using
elementary arguments.

Explicit result for g = 1, a0 = b0 = 0:

Z

M1,n+1

DDR1 
n�1
0 =

1

24

0

@
X

i<j

(aibj � ajbi )
2 �

X

i

gcd(ai , bi )

1

A

Key tool: intersection theory of toric blowups.

(Holmes-Molcho-Pandharipande-Pixton-Schmitt, 2024) Describes how
to compute the DDR cycle, via the logarithmic DR cycle.
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Reference for explicitly building T

z

x
y

(0, 1
2 ,

1
2 )( 12 , 0,

1
2 )

( 12 ,
1
2 , 0)

( 13 ,
1
3 ,

1
3 )

T

• x + y + z = 1

• 0 < x  y  z

• x + y > z (4-ineq)



Reference for Bézout on T

3 : 4 : 5

mult. 1

mult. 2 (at 1)

" second hyperbola branch

Source: WolframAlpha


