Measuring the Butterfly Velocity in the XY Model on Emerging Quantum Computers

Calum McCartney

Summer Research in Maths Programme 2024 Centre for Mathematical Sciences University of Cambridge

October 14th 2024

1/20

Calum McCartney (Summer Research in MatMeasuring the Butterfly Velocity in the XY N October 14th 2024

What is a Quantum Computer?

Quantum Computer

A device that maps a sequence of gates to real numbers according to some rules of quantum mechanics (L2 normalised states measured using Born Rule). This allows n qubits to utilise an N dimensional complex Hilbert space for computations.

Qubits

Quantum bits that take the form $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = (\alpha, \beta)^T \in \mathcal{H}.$

Gates

Functions $G : \mathcal{H} \to \mathcal{H}$, generally represented by unitary matrices.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Introduction

XY Model

Discrete spin system defined by Hamiltonian:

$$H = J \sum_{j} \left(\frac{1+r}{2} X_{j} X_{j+1} + \frac{1-r}{2} Y_{j} Y_{j+1} + h Z_{j} \right).$$

$$\mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

æ

Introduction

XY Model

Discrete spin system defined by Hamiltonian:

$$H = J \sum_{j} \left(\frac{1+r}{2} X_{j} X_{j+1} + \frac{1-r}{2} Y_{j} Y_{j+1} + h Z_{j} \right).$$

$$\mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Butterfly Velocity

Speed of information propagation through spin system.

Introduction

XY Model

Discrete spin system defined by Hamiltonian:

$$H = J \sum_{j} \left(\frac{1+r}{2} X_{j} X_{j+1} + \frac{1-r}{2} Y_{j} Y_{j+1} + h Z_{j} \right).$$

$$\mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Butterfly Velocity

Speed of information propagation through spin system.

Out-of-Time-Order Correlator (OTOC)

$$F(t) \equiv \langle W(t)^{\dagger} V^{\dagger} W(t) V \rangle_{\rho} \equiv \operatorname{Tr}(\rho W(t)^{\dagger} V^{\dagger} W(t) V)$$

$$W(t)\equiv e^{iHt}We^{-iHt}\equiv U^{\dagger}WU$$

Calum McCartney (Summer Research in MatMeasuring the Butterfly Velocity in the XY M

Study and understand information transport in spin systems (or more generally dynamical systems).

Study and understand information transport in spin systems (or more generally dynamical systems).

Challenges

• Hard to understand analytically.

Study and understand information transport in spin systems (or more generally dynamical systems).

Challenges

- Hard to understand analytically.
- Numerically estimating may be hard using classical computation.

Study and understand information transport in spin systems (or more generally dynamical systems).

Challenges

- Hard to understand analytically.
- Numerically estimating may be hard using classical computation.
- Current quantum computers have issues.

Study and understand information transport in spin systems (or more generally dynamical systems).

Challenges

- Hard to understand analytically.
- Numerically estimating may be hard using classical computation.
- Current quantum computers have issues.

Approach

Build a robust, near-optimal, scalable numerical quantum algorithms for measuring information transport using out-of-time-order correlation functions (OTOCs).

OTOC Wireframe Plots

 $C(t) \equiv \operatorname{Tr} \left(\rho | [W(t), V]|^2 \right) = 2 - 2 \operatorname{Re} F(t)$

< □ > < □ > < □ > < □ > < □ > < □ >

э

IBM-FakeTorino Noisy Quantum Simulator Plots

 $C(t) \equiv \operatorname{Tr} \left(\rho | [W(t), V]|^2 \right) = 2 - 2 \operatorname{Re} F(t)$

Calum McCartney (Summer Research in MatMeasuring the Butterfly Velocity in the XY M October 14th 2024 6/20

< 行

IBM-Q Simulated Butterfly Velocity

Spreading Time: $t_j = \min_t \{C_j(t) > 0.1\}$

Calum McCartney (Summer Research in Mat Measuring the Butterfly Velocity in the XY N October 14th 2024 7/3

YKY Algorithm

$$F(t) = \sum_{V,W} \frac{1}{2^n} \operatorname{Tr}(W(t)VW(t)V)$$

<ロト < 四ト < 三ト < 三ト

3

æ

Calum McCartney (Summer Research in MatMeasuring the Butterfly Velocity in the XY N October 14th 2024 8/20

æ

YKY Algorithm

э

2

< ∃⇒

$$\sum_{P \in \{I, X, Y, Z\}} P^T \otimes P = \square$$

Calum McCartney (Summer Research in Mat Measuring the Butterfly Velocity in the XY N October 14th 2024 10/

2

< ∃⇒

YKY Algorithm

글 🛌 글

æ

∃ →

Riemannian Trust Regions

How do we (efficiently) create $U (= e^{-iHt})$?

æ

Riemannian Trust Regions

How do we (efficiently) create $U (= e^{-iHt})$?

Manifold optimisation method of Riemannian Trust Regions method to map the Hamiltonian H to a set of local SU(4) gates. Utilise properties of the Hamiltonian, such as translation-invariance. Non-asymptotically more promising than Product-Splitting methods (such as Lie-Trotter-Suzuki-Strang-Yoshida)

Spin Lattice Hamiltonian for XY Model

$$H = J \sum_{j} \left(\frac{1+r}{2} X_{j} X_{j+1} + \frac{1-r}{2} Y_{j} Y_{j+1} + h Z_{j} \right)$$

$$\mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Calum McCartney (Summer Research in MatMeasuring the Butterfly Velocity in the XY M October 14th 2024 14 / 20

Spin Lattice Hamiltonian for XY Model

$$H = J \sum_{j} \left(\frac{1+r}{2} X_{j} X_{j+1} + \frac{1-r}{2} Y_{j} Y_{j+1} + h Z_{j} \right)$$

Fermionic Hamiltonian for XY Model

$$\begin{split} H &= J \sum_{j} r(f_{j+1}f_j + f_j^{\dagger}f_{j+1}^{\dagger}) + (f_{j+1}^{\dagger}f_j + f_j^{\dagger}f_{j+1}) \\ &+ h(\mathbb{I} - 2f_j^{\dagger}f_j) \end{split}$$

$$f_j = \underbrace{Z \otimes \ldots \otimes Z}_{j-1} \otimes \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Calum McCartney (Summer Research in MatMeasuring the Butterfly Velocity in the XY N October 14th 2024 15 / 20

Fermionic Hamiltonian for XY Model

$$\begin{split} H &= J \sum_{j} r(f_{j+1}f_j + f_j^{\dagger}f_{j+1}^{\dagger}) + (f_{j+1}^{\dagger}f_j + f_j^{\dagger}f_{j+1}) \\ &+ h(\mathbb{I} - 2f_j^{\dagger}f_j) \end{split}$$

Fermionic Hamiltonian for XY Model

$$H = J \sum_{j} r(f_{j+1}f_j + f_j^{\dagger}f_{j+1}^{\dagger}) + (f_{j+1}^{\dagger}f_j + f_j^{\dagger}f_{j+1}) + h(\mathbb{I} - 2f_i^{\dagger}f_j)$$

Fermionic Momentum Space Hamiltonian for XY Model

$$H = -J\sum_{k} 2(h - \cos(k))c_{k}^{\dagger}c_{k}$$
$$+ ir\sin(k)(c_{-k}^{\dagger}c_{k}^{\dagger} + c_{-k}c_{k}) - hI$$

Calum McCartney (Summer Research in MatMeasuring the Butterfly Velocity in the XY N October 14th 2024 16/20

Fermionic Momentum Space Hamiltonian for XY Model

$$H = -J\sum_{k} 2(h - \cos(k))c_{k}^{\dagger}c_{k}$$
$$+ ir\sin(k)(c_{-k}^{\dagger}c_{k}^{\dagger} + c_{-k}c_{k}) - h\mathbb{I}$$

э

Fermionic Momentum Space Hamiltonian for XY Model

$$H = -J\sum_{k} 2(h - \cos(k))c_{k}^{\dagger}c_{k}$$
$$+ ir\sin(k)(c_{-k}^{\dagger}c_{k}^{\dagger} + c_{-k}c_{k}) - h\mathbb{I}$$

Bogoliubov Transform

$$\gamma_k = u_k c_k - i v_k c_{-k}^{\dagger}$$

$$u_k, v_k \in \mathbb{R}, \quad u_k^2 + v_k^2 = 1, \quad u_{-k} = u_k, \quad v_{-k} = -v_k$$

Calum McCartney (Summer Research in MatMeasuring the Butterfly Velocity in the XY M October 14th 2024 17/20

æ

Fermionic Momentum Space Hamiltonian for XY Model

$$H = -J\sum_{k} 2(h - \cos(k))c_{k}^{\dagger}c_{k}$$
$$+ ir\sin(k)(c_{-k}^{\dagger}c_{k}^{\dagger} + c_{-k}c_{k}) - h\mathbb{I}$$

Bogoliubov Transform

$$\gamma_k = u_k c_k - i v_k c_{-k}^{\dagger}$$

$$u_k, v_k \in \mathbb{R}, \quad u_k^2 + v_k^2 = 1, \quad u_{-k} = u_k, \quad v_{-k} = -v_k$$

Bogoliubov Angle

$$u_k = \cos(\theta_k/2)$$
 $v_k = \sin(\theta_k/2)$

문 🛌 🖻

17 / 20

Calum McCartney (Summer Research in MatMeasuring the Butterfly Velocity in the XY N October 14th 2024

Diagonalised Hamiltonian for XY Model

$$H = \sum_{k} \varepsilon(k; r, h) \left(\gamma_{k}^{\dagger} \gamma_{k} - \frac{1}{2} \right)$$
(1)

Diagonalised Hamiltonian for XY Model

$$H = \sum_{k} \varepsilon(k; r, h) \left(\gamma_{k}^{\dagger} \gamma_{k} - \frac{1}{2} \right)$$
(1)

(2)

Energy Dispersion Relation

$$\varepsilon(k; r, h) = -2J\sqrt{(h - \cos k)^2 + r^2 \sin^2 k}$$

Diagonalised Hamiltonian for XY Model

$$H = \sum_{k} \varepsilon(k; r, h) \left(\gamma_{k}^{\dagger} \gamma_{k} - \frac{1}{2} \right)$$
(1)

(2)

Energy Dispersion Relation

$$\varepsilon(k; r, h) = -2J\sqrt{(h - \cos k)^2 + r^2 \sin^2 k}$$

Group Velocity

$$v_g(k; r, h) = -2J \frac{\sin k(h - \cos k) + r^2 \sin k \cos k}{\sqrt{(h - \cos k)^2 + r^2 \sin^2 k}}$$
(3)

Group Velocity

$$v_g(k; r, h) = -2J \frac{\sin k(h - \cos k) + r^2 \sin k \cos k}{\sqrt{(h - \cos k)^2 + r^2 \sin^2 k}}$$

æ

Group Velocity

$$v_g(k; r, h) = -2J \frac{\sin k(h - \cos k) + r^2 \sin k \cos k}{\sqrt{(h - \cos k)^2 + r^2 \sin^2 k}}$$

	J	r	h	v _B
lsotropic	1	0	0	2
TFIM	1	1	0.5	1
Anisotropic	1	1.5	1	3

æ

Calum McCartney (Summer Research in Mat Measuring the Butterfly Velocity in the XY N October 14th 2024 19 / 20

Summary

• Can use YKY algorithm together with RTR to robustly measure OTOC in spin systems on a noisy quantum simulator.

Summary

- Can use YKY algorithm together with RTR to robustly measure OTOC in spin systems on a noisy quantum simulator.
- Can use OTOCs to measure the butterfly velocity in a quantum spin system.

Summary

- Can use YKY algorithm together with RTR to robustly measure OTOC in spin systems on a noisy quantum simulator.
- Can use OTOCs to measure the butterfly velocity in a quantum spin system.
- The numerical results agree with analytical calculations for the XY Model.

Summary

- Can use YKY algorithm together with RTR to robustly measure OTOC in spin systems on a noisy quantum simulator.
- Can use OTOCs to measure the butterfly velocity in a quantum spin system.
- The numerical results agree with analytical calculations for the XY Model.

Future Ideas

• Larger, more complex models without analytic solutions.

Summary

- Can use YKY algorithm together with RTR to robustly measure OTOC in spin systems on a noisy quantum simulator.
- Can use OTOCs to measure the butterfly velocity in a quantum spin system.
- The numerical results agree with analytical calculations for the XY Model.

Future Ideas

- Larger, more complex models without analytic solutions.
- Compute robustly on an actual quantum computer.

Summary

- Can use YKY algorithm together with RTR to robustly measure OTOC in spin systems on a noisy quantum simulator.
- Can use OTOCs to measure the butterfly velocity in a quantum spin system.
- The numerical results agree with analytical calculations for the XY Model.

Future Ideas

- Larger, more complex models without analytic solutions.
- Compute robustly on an actual quantum computer.
- Different initial thermal states.

Summary

- Can use YKY algorithm together with RTR to robustly measure OTOC in spin systems on a noisy quantum simulator.
- Can use OTOCs to measure the butterfly velocity in a quantum spin system.
- The numerical results agree with analytical calculations for the XY Model.

Future Ideas

- Larger, more complex models without analytic solutions.
- Compute robustly on an actual quantum computer.
- Different initial thermal states.

Also, read the pre-print (if Section II ever gets finished...) at arXiv 2410.XXXXX