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My Internship Project
I studied the viability of using a type of photonic quantum computer to 
solve problems in graph theory

Some problems in graph theory are very computationally complex: it 
takes a classical computer a long time to solve them

There have been propositions about how we could perhaps solve these 
problems quicker using quantum computers

I spent the summer investigating some of these propositions 
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A Quick Intro. to Graph Theory
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0 1 0
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Adjacency Matrix

A Quick Intro. to Graph Theory
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Why Solve Graph Problems?

Social Network Analysis Protein Structure Analysis
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What is a Permanent
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How can we use Photonic 
Quantum Computers?
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Sample outcome probabilities
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Sample outcome probabilities
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𝑝 𝑛𝑜𝑢𝑡|𝑛𝑖𝑛 = 𝑃𝑒𝑟 𝑈𝑛𝑖𝑛,𝑛𝑜𝑢𝑡
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Encoding the Graph Theory Problem

• Have a size 𝑛 graph G

• Have it’s 𝑛 ×  𝑛 adjacency matrix 𝐴

• We set up a circuit (pick a 𝑈) and pick 𝑛𝑖𝑛 input 
distribution such that for some output 𝑛𝑜𝑢𝑡  : 

𝑝 𝑛𝑜𝑢𝑡|𝑛𝑖𝑛 = 𝑃𝑒𝑟 𝑈𝑛𝑖𝑛,𝑛𝑜𝑢𝑡

2
∝ 𝑃𝑒𝑟 𝐴 2 
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𝑝 = 𝑝 𝑛𝑜𝑢𝑡|𝑛𝑖𝑛 = 𝑃𝑒𝑟 𝐴𝑠
2 =

1

𝜆𝑚𝑎𝑥
2𝑛 𝑃𝑒𝑟 𝐴 2

Our final probability

With this setup, we have an 
outcome probability:

If we estimate 𝑝, we can calculate the permanent of our graph!
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# 𝑛𝑜𝑢𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

# 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
= 𝑝𝑒𝑠𝑡 

𝑃𝑒𝑟𝑒𝑠𝑡 = 𝜆𝑚𝑎𝑥
𝑛 𝑝𝑒𝑠𝑡 

As # 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 → ∞ ∶
𝑃𝑒𝑟𝑒𝑠𝑡 → 𝑃𝑒𝑟

Estimating the Permanent

Photonic circuit with graph encoded
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The Complete Algorithm

• Set up a photonic quantum circuit such that the 
probability of a certain outcome is:

• Have a size 𝑛 graph G

• We want to calculate 𝑃𝑒𝑟 𝐴 , the value of its permanent

𝑝 𝑛𝑜𝑢𝑡|𝑛𝑖𝑛 ∝ 𝑃𝑒𝑟 𝐴 2 

• We estimate this value, and we get useful information about the 
graph!

Proposed by R. Mezher, A.F. Carvalho & S. Mansfield:

“Solving graph problems with single-photons and linear optics”
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My Analysis of the Algorithm
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How many samples do we need?

We want to calculate the value 𝑃𝑒𝑟 within some percentage 
error of the true value. It turns out, we need:

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ≥
1

𝑝

We want this to be a lot smaller than 
the classical complexity of 𝑛2𝑛 to get 
‘quantum advantage’Photonic circuit with graph encoded
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Lower bounding sample number

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ≥
1

𝑝
=

1

𝑃𝑒𝑟 𝐴𝑠
2

=
𝜆𝑚𝑎𝑥

2𝑛

𝑃𝑒𝑟 𝐴 2

We want to lower bound this in terms of 𝑛: the size of the 
graph. With (lots of) work, we get to the following bound:

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ≥
𝜆𝑚𝑎𝑥

2𝑛

𝑃𝑒𝑟 𝐴 2 ≥ 22𝑛
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Calculating permanents for general graphs with this proposition 
isn’t very efficient.

What can we conclude?

We need to run our circuit 22𝑛 times to do this for a size 𝑛 graph! 
Classical computers only need 𝑛2𝑛 operations to calculate the 
value exactly.
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Calculating permanents for general graphs with this proposition 
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Calculating permanents for general graphs with this proposition 
isn’t very efficient.

What can we conclude?

We need to run our circuit 22𝑛 times to do this for a size 𝑛 graph! 
Classical computers only need 𝑛2𝑛 operations to calculate the 
value exactly.

50 ⋅ 250 = 56294995342131200

22 ⋅ 50 = 1267650600228229400000000000000
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Photonic Quantum Computers are Useful
With some slight tweaking of our input state, we can use our setup to 
efficiently sample a distribution of subgraphs with bias towards those with 
more edges. It takes classical computers a long time to do this.

ORCA PT-series device

There’s lots of promising research into the 
application of photonic quantum 
computers for: 

• optimisation problems

• machine learning

• simulating physical phenomena
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Thank you very much to my supervisors 
William Clements, Thorin Farnsworth, Hugo 
Wallner and the rest of the team at ORCA!

Thank you very much to Sally Baume for 
coordinating the CMP program!
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Thanks for listening!

Please do ask any questions 
you have
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