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My Internship Project

| studied the viabllity of using a type of photonic quantum computer to
solve problems in graph theory

Some problems in graph theory are very computationally complex: it
takes a classical computer a long time to solve them

There have been propositions about how we could perhaps solve these
problems quicker using guantum computers

| spent the summer investigating some of these propositions



A Quick Intro. to Graph Theory
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Why Solve Graph Problems?

Social Network Analysis Protein Structure Analysis

Protein graph 1
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What is a Permanent
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What is a Permanent
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How can we use Photonic
Quantum Computers?



Sample outcome probabilities
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Encoding the Graph Theory Problem

* Have a size n graph G
* Have it's n X n adjacency matrix 4

» We set up a circuit (pick a U) and pick n;, input
distribution such that for some output n,,; :

P(outlnin) = |Per(Upyngue )|  [Per(A)|?



Our final probability

With this setup, we have an
outcome probability:

1
p = p(Nour|nin) = |Per(45)|? = o |Per(A)|?

max

If we estimate p, we can calculate the permanent of our graph!



Estimating the Permanent

# noyt Samples

# samples = Pest

— n
Perest o max\/pest

As # samples — oo :
Photonic circuit with graph encoded Perest — Per
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The Complete Algorithm

 Have a size n graph G

* We want to calculate Per(A), the value of its permanent

» Set up a photonic quantum circuit such that the
probability of a certain outcome Is:

p(ﬂoutlﬂin) X |P€7‘(A)|2

* We estimate this value, and we get useful information about the
graph!

Proposed by R. Mezher, A.F. Carvalho & S. Mansfield:
“Solving graph problems with single-photons and linear optics”
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My Analysis of the Algorithm



How many samples do we need?

We want to calculate the value Per within some percentage
error of the true value. It turns out, we need.:

1

Nsamples = E

We want this to be a lot smaller than
the classical complexity of n2" to get
Photonic circuit with graph encoded  ‘quantum advantage’




Lower bounding sample number

1 1 AZ1

p  |Per(A))2  |Per(A)|?

N samples =

We want to lower bound this in terms of n: the size of the
graph. With (lots of) work, we get to the following bound:

AZTL

> max > 22n
Nsamples = |Per(4)|2 =
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What can we conclude?

Calculating permanents for general graphs with this proposition
isn’t very efficient.

We need to run our circuit 24" times to do this for a size n graph!
Classical computers only need n2" operations to calculate the

value exactly.

19



What can we conclude?

Calculating permanents for general graphs with this proposition
isn’t very efficient.

We need to run our circuit 24" times to do this for a size n graph!
Classical computers only need n2" operations to calculate the

value exactly.

50 - 2°Y = 56294995342131200



What can we conclude?

Calculating permanents for general graphs with this proposition
isn’t very efficient.

We need to run our circuit 24" times to do this for a size n graph!
Classical computers only need n2" operations to calculate the

value exactly.

50 - 2°Y = 56294995342131200
2250 = 1267650600228229400000000000000



Photonic Quantum Computers are Useful

With some slight tweaking of our input state, we can use our setup to
efficiently sample a distribution of subgraphs with bias towards those with
more edges. It takes classical computers a long time to do this.

There’s lots of promising research into the
application of photonic quantum
computers for:

 optimisation problems
* machine learning
 simulating physical phenomena

N

ORCA PT-series device
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Thank you very much to Sally Baume for
coordinating the CMP program!

Thank you very much to my supervisors
William Clements, Thorin Farnsworth, Hugo
Wallner and the rest of the team at ORCA!




Thanks for listening!

Please do ask any questions

you have
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