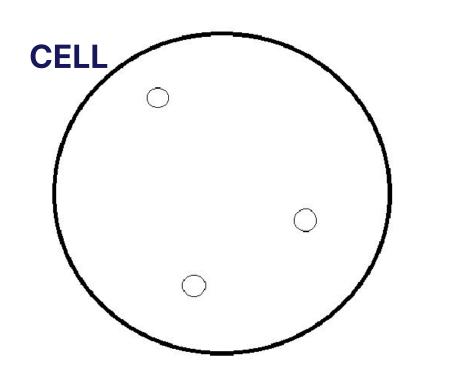
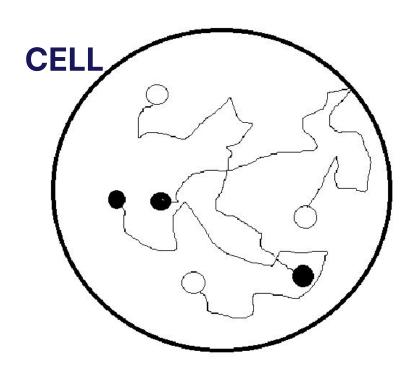
Mentors: Prof Richard Nickl and Fanny Seizilles

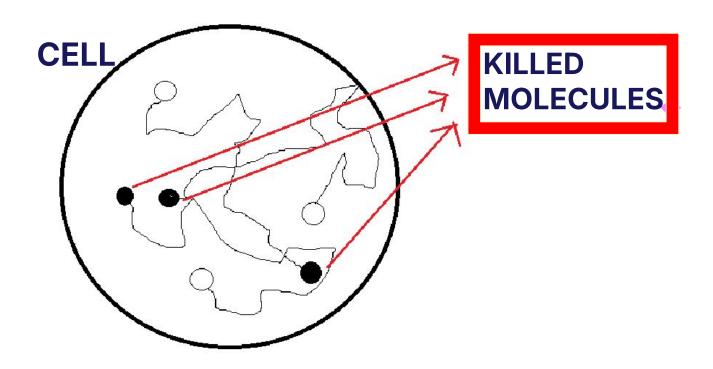
INFERRING DIFFUSION FROM KILLED MOLECULES

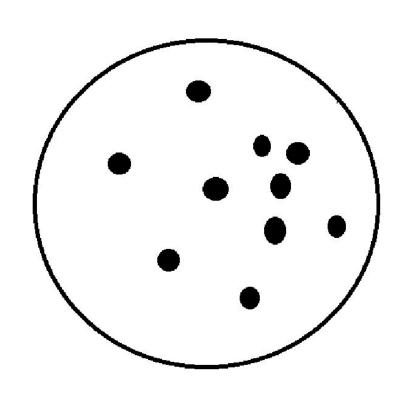
Paula Horvat



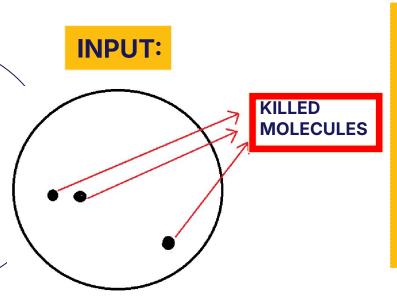






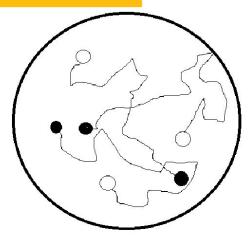


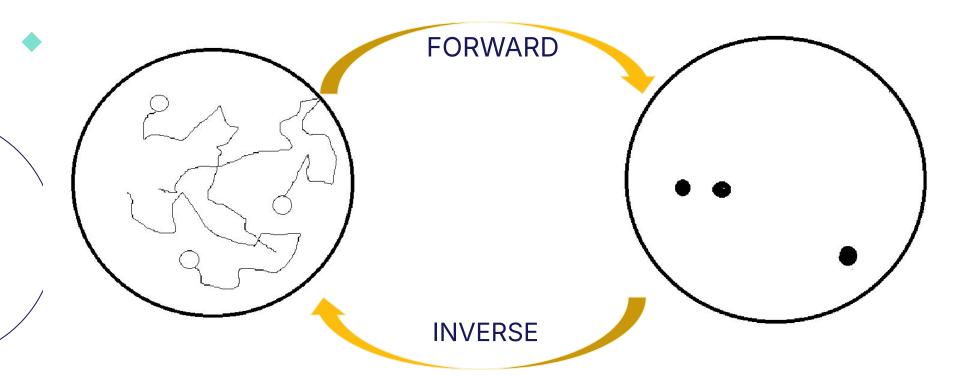
KILLED MOLECULES



QUESTION:
Given the positions of killed molecules, can we reconstruct their trajectories?

OUTPUT:





- $\Omega \subset \mathbb{R}^2$ bounded domain
- $(X_t, t \ge 0)$ Markov process, $X_0 \sim \phi$

- $\Omega \subset \mathbb{R}^2$ bounded domain
- $(X_t, t \geq 0)$ Markov process, $X_0 \sim \phi$

$$dX_t = \nabla D(X_t) dt + \sqrt{2 D(X_t)} dW_t + \nu(X_t) dL_t, \ t > 0$$

Deterministic movement

Random shaking

Reflection at the boundary

- $\Omega \subset \mathbb{R}^2$ bounded domain
- $(X_t, t \geq 0)$ Markov process, $X_0 \sim \phi$

$$dX_t = \nabla D(X_t) dt + \sqrt{2 D(X_t)} dW_t + \nu(X_t) dL_t, \ t > 0$$

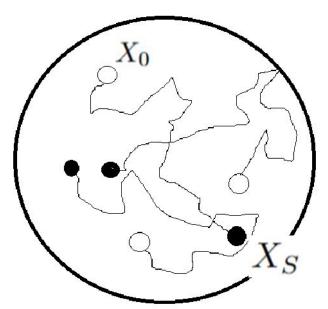
$$D:\Omega \to [D_{min},\infty) \stackrel{\text{diffusivity}}{\to \text{everything we need to know about}}$$

- → diffusivity
- the movement of molecules

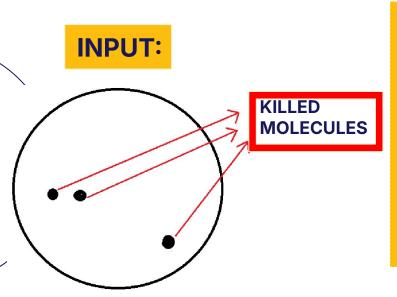
- $dX_t = \nabla D(X_t) dt + \sqrt{2D(X_t)} dW_t + \nu(X_t) dL_t, \ t > 0$
 - $q:\Omega\to[0,\infty)$ killing potential

- $dX_t = \nabla D(X_t) dt + \sqrt{2 D(X_t)} dW_t + \nu(X_t) dL_t, \ t > 0$
 - $q:\Omega\to[0,\infty)$ killing potential
 - S killing time

- $dX_t = \nabla D(X_t) dt + \sqrt{2 D(X_t)} dW_t + \nu(X_t) dL_t, \ t > 0$
 - $q:\Omega\to[0,\infty)$ killing potential
 - S killing time

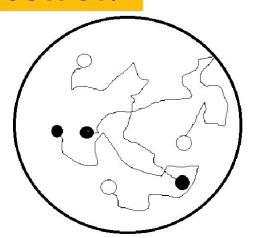


- $n_{mol} = \#$ of molecules in the domain
- $X_t^m, m = 1, ..., n_{mol} i.i.d.$



QUESTION:
Given the positions of killed molecules, can we reconstruct their trajectories?

OUTPUT:



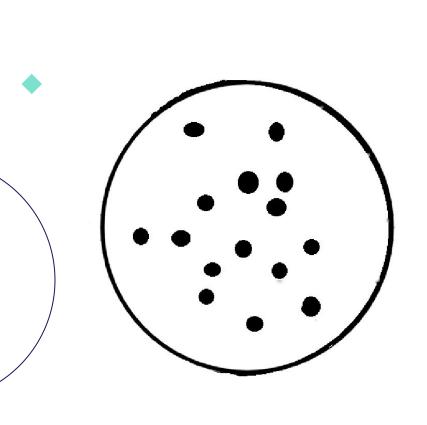
$X_S^m, m=1,..,n_{mol}$

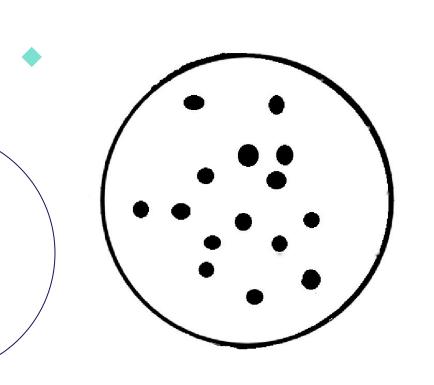
QUESTION:
Given the positions of killed molecules, can we reconstruct their trajectories?

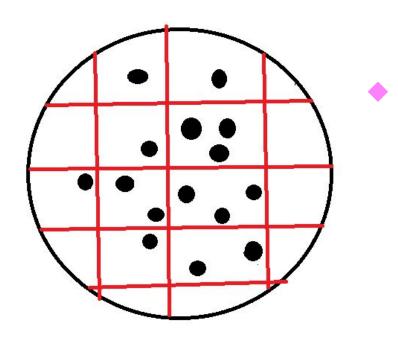
OUTPUT:

D - diffusivity

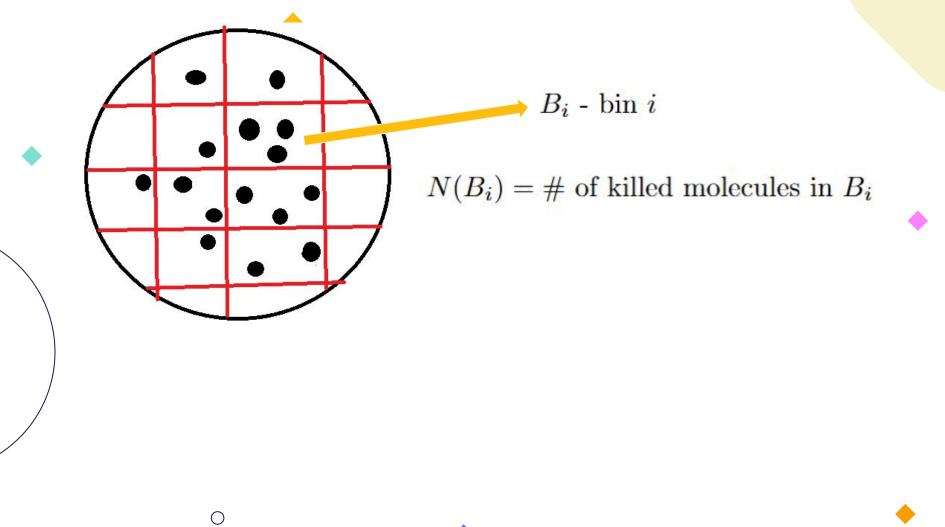
SOLUTION

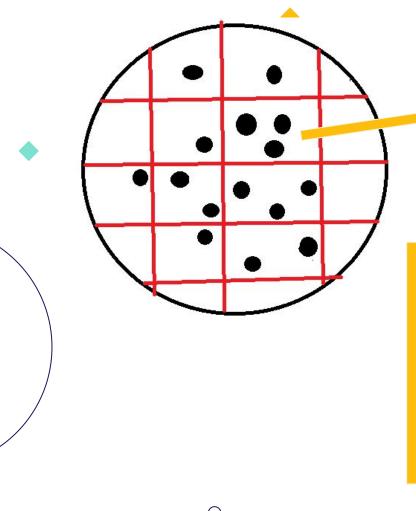






 C

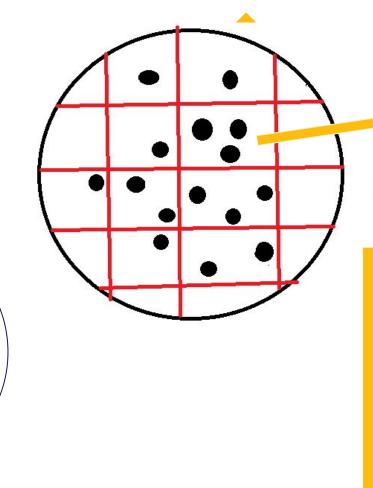




 $\rightarrow B_i$ - bin i

 $N(B_i) = \#$ of killed molecules in B_i

 $N(B_i) \sim Poisson(n_{mol}\Lambda_D(B_i))$



 $\rightarrow B_i$ - bin i

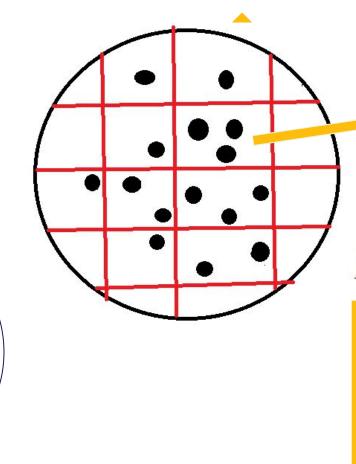
 $N(B_i) = \#$ of killed molecules in B_i

 $N(B_i) \sim Poisson(n_{mol}\Lambda_D(B_i))$

N - Poisson point process with intensity measure Λ_D

Questions for my project:

What if we don't know **when** all the molecules were killed? What if we don't know **if** the molecules stopped moving? Is it possible to reach the same **conclusions**?



 $\rightarrow B_i$ - bin i

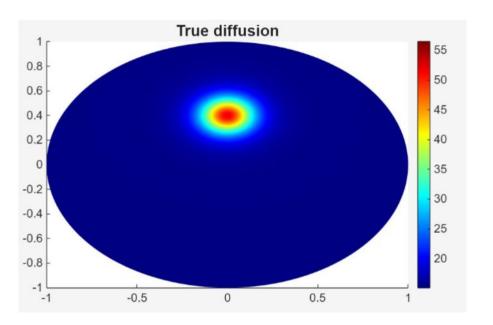
$$N(B_i) = \#$$
 of killed molecules in B_i

 $N(B_i) := \#$ of molecules in B_i at time t

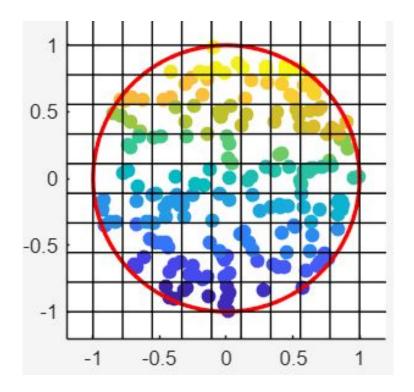
 $N(B_i) \sim Poisson(n_{mol}\Lambda_{D,t}(B_i))$

N - Poisson point process with intensity measure $\Lambda_{D,t}$

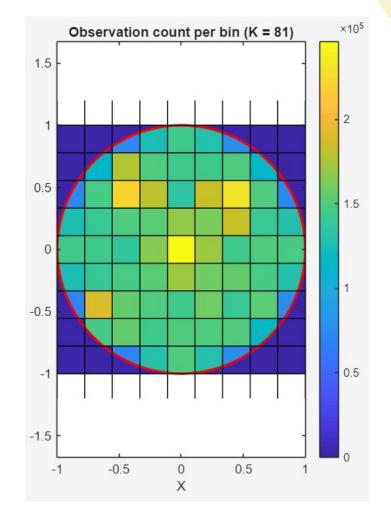
 Simulation of observations with known diffusivity



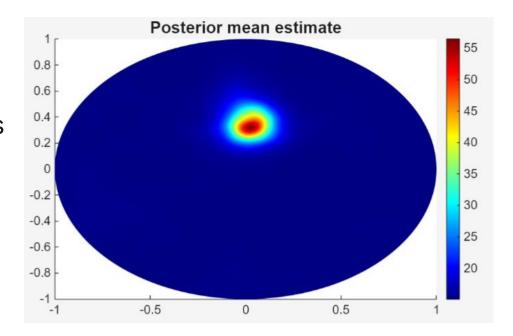
- 1. Simulation of observations with known diffusivity
- 2. $Y_1, ..., Y_K$ counts of molecules

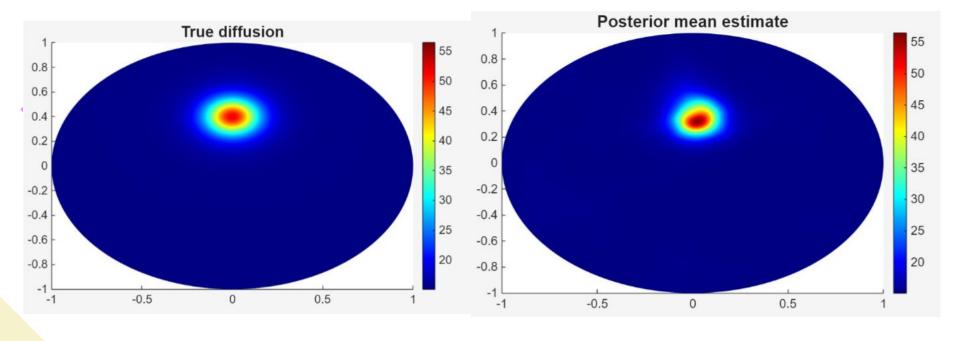


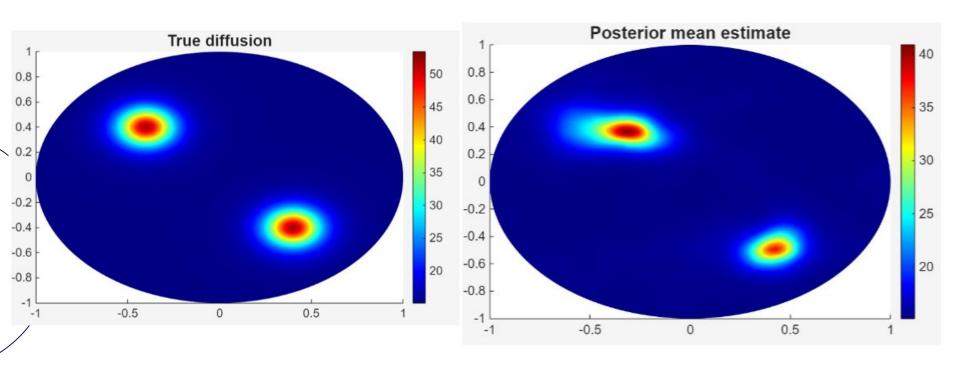
- Simulation of observations with known diffusivity
- 2. $Y_1, ..., Y_K$ counts of molecules



- Simulation of observations with known diffusivity
- 2. $Y_1, ..., Y_K$ counts of molecules
- 3. Estimation of diffusivity







Thank you!

