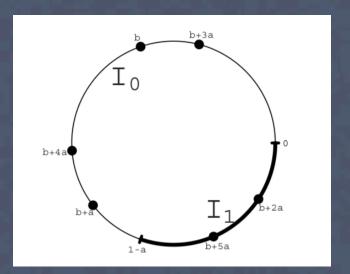
Quantifying Simplicity For Finitely Generated Groups

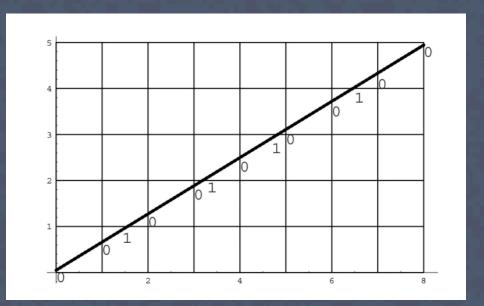
Supervision: Dr Henry Bradford

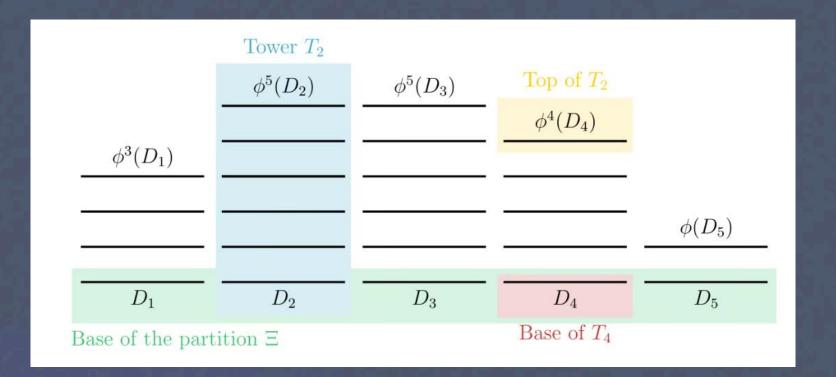
Setup and background

Dynamical systems and group theory!

- The Cantor set and cylinders
- The shift map
- Sturmian sub-shifts
- Dynamical properties
- An infinite finitely generated simple group!







The cantor set

Let A be a finite alphabet set. We think of the cantor set as the set $A^{\mathbb{Z}}$. We equip this set with the topology generated by cylinder sets.

Definition of a cylinder set

A cylinder set of $A^{\mathbb{Z}}$ is a set of the form:

$$\langle \langle u_k, \dots, u_{-1}, u_0, u_1, \dots, u_l \rangle \rangle = \{ y \in A^{\mathbb{Z}} : y_i = u_i \text{ for } k \le i \le l \},$$

where $k, l \in \mathbb{Z}$ with $k \leq 0 \leq l$ and $u_i \in A$ for $k \leq i \leq l$. For $u \in A^n$ and $1 \leq i \leq n$, we write

$$\langle\langle u \rangle\rangle_i = \langle\langle u_1, \dots, u_{i-1}, u_i, u_{i+1}, \dots, u_n \rangle\rangle.$$

We equip the cantor set with the topology generated By these sets.

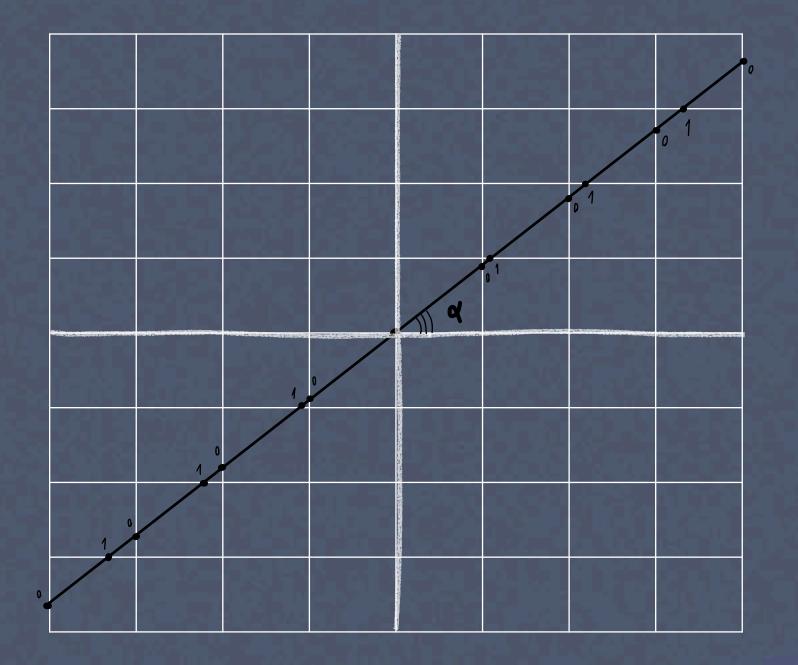
The shift map

The shift map σ on the full shift $A^{\mathbb{Z}}$ maps a point x to the point $y = \sigma(x)$ whose ith coordinate is $y_i = x_{i+1}$.

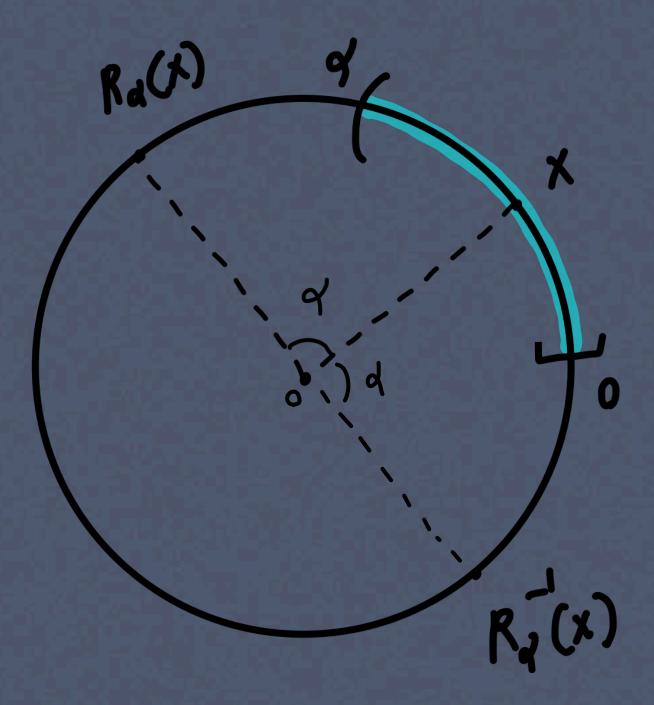
The operation σ maps the full shift $A^{\mathbb{Z}}$ onto itself:

$$x = \cdots x_{-3} x_{-2} x_{-1} x_0 x_1 x_2 x_3 \cdots$$

$$y = \sigma(x) = \cdots x_{-2} x_{-1} x_0 x_1 x_2 x_3 x_4 \cdots$$



Take $\alpha \in \mathbb{Q}^c$. Code the intersections of the line with the grid.



Take the orbit of x under the rotation R_{α} and code it with respect to the interval U_{α}

$$h:S^1\longrightarrow\{0,1\}^{\mathbb{Z}}$$

Take h as our coding of the unit circle.

$$X = \overline{h(S^1)}$$

X will be invarient under the shift map. The dynamical system (X, σ) is called a subshift.

 (X, σ) has no periodic points.

Every $x \in X$ has a dense orbit under the shift map.

How often do we visit the cylinders?

How long does it take to come back to a cylinder set?

We can construct an interesting group Γ based on this dynamical system!

A group G is simple iff for every element $x \in G$ and every element $g \in G$, x can be written as a product of conjugates of g.

Γ is a simple group!

The dynamical properties of the sub-shift relate to the properties of this product in Γ .

