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PART 1: Gravitational waves
from cosmic Strings



INTRODUCTION:

Universe cooled, symmetry-breaking phase transitions occurred -> (Kibble mechanism)

-> Topological defects

Cosmic strings are infinitesimally thin and extremely dense one-dimensional objects
which form when an axial or cylindrical symmetry is broken.

Evolution of cosmic string network -> cosmological expansion, intercommuting -> GW

radiation

Current goals: probing their SGWB across
string tensions below current limits.

PTA-LIGO-LISA bands, pushing sensitivity to
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COSMIC STRING NETWORK EVOLUTION

On large scales, one can describe statistically the cosmic string evolution through the

characteristic length scale L and the Root-Mean-Squared (RMS) velocity v - Velocity
dependent One-Scale (VOS) model:
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Where H = g, And  k(v) =

Attractor solution (Linear scaling regime): axt’  0<B8<1
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Velocity scaling Length scaling
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intercommute  loop produces gravitational radiation
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STOCHASTIC GRAVITATIONAL WAVE BACKGROUND

Loops emit GWSs In a discrete set of frequencies: fi=—

Spectral index

Power emitted into each harmonic moage: 4 5
==, = 2
/ q 3’ 3,
dE 30 1o0p L /

D2 _ L
dt FiGu here 5 e Cusps
— Kinks
Normalisation factor: e =) " m™ . Y Pj=
m=1 J \ ¢
iE. I ~ 50 Kink-Kink
Total power: P = Z — =Gy’ Z P; = I'Gu? collisions



STOCHASTIC GRAVITATIONAL WAVE BACKGROUND

Amplitude of the SGWB generated by cosmic string loops - spectral energy of GW:

1 dpgw a2
Qgu(f) = - dlog | Where pc = 3H;/87G
APgw ,,\ o, (a(t) 2o / ( %o ) 2
af (t) = 2m /t dt (a(t) ) /0 Ldin(l,t")g o(t") 2w fl ) Gu
. a(t") \ Scale factor today:
Redshift factors:  f = femit o(0) (to)
aogp — al\lp

Function g(x) is normalised by: / g(z)dx =T
0

Model a discrete emission spectrum: z = (ap/a(t'))2m f




STOCHASTIC GRAVITATIONAL WAVE BACKGROUND

In terms of the power spectrum: / Number of modes considered

Qg (f) =D P, (f)
j=1

| 160 (Gu\°T [to o NN\’
where Q;w(f):T”(F’o ?/t jn(lj(t),t)(a(t)> dt

IS the contribution of the j-harmonic mode of emission to the SGVWB.

[ (t") = 2ja(t')/ fao is the physical length of the loops that radiate in the j-harmonic mode at
time t’.

Useful relation: Qﬁ}w Uf) = ley'w



. OOP PRODUCTION FUNCTION

. . dp _ P
=nergy lostintoloops: - 4| =L Number of loops with length
Fnergy density < between [ and [ + dl produced per
p=p/L? z:'fv% = L / Lf(L,t)dl unit ime
0
Loops shrink due to gravitational radiation at e ~-I'Gu
constant rate: at

co(t
Loop production function: | f(I,t) = \/;(:EL()t) ;0 —al) Loop size parameter



NUMBER DENSITY

Total number density:

wit) = [ an s (490)

Substituting in loop production function:

o (ar 0 e (a)\]
n(l,t) = Z { (aahztl()i) T FG“) \/ﬁaL(t?)‘l ( a(:) ) }
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Scaling regime: () _ L+ TGput
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n(l,t)



ANALYT‘CAL APPROX‘ MA—HON Sousa, Avelino & Guedes, Phys. Rev. D 101 (2020) 103508.

Produced and decay In the radiation era:
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Produced in the radiation era and decay in the matter era:
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FIG. 2: Analytical approximation to the stochastic gravitational wave background generated by cosmic
string networks with Gu = 107 '%and a = 0.1.



Three main mechanisms for loop GW emission:
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NUMERICAL SCHEME

Comoving number density:

Use methods of characteristics

dN
Along each such curve PDE collapses to an ODE: 7
B t 5 CU(T)
N(,t) —/ti a(T) VaL(r)!

Define:

3

= an

N + 8,(IN) = a3 f(L,t)

| =u(l,t) = —T'Gpu

(I +TGu(t —7)— aL(T))dr

~| ty =g (I +TGut)
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stochastic gravitational wave
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(Gu = 107" and a = 0.1).



FUTURE RESEARCH

Explore other types of loop production functions (non-discrete) as well as extending to
scenarios where loop production does not occur at a single lengthscale.

Extend Lasse Gerblich’s research on the effects of gravitational back reaction on
cosmic string networks and see how the back reaction affects the SGWB spectrum.
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PART 2: Gravitational \Vaves
from Inflation



COSMOLOGICAL PERTURBATION THEORY

Full metric of GR decoupled into its background and perturbation parts: guv = Guv + 09

ds’® = —N2(1 -+ 2A)dt2 + ZaNB,,;dtda:i - a’ (523 -+ 2E¢j)d$id$j

Time slicing B; = 8;B + B,

1
Whel’e 8(28]>E — (826] — §V2523> E

Scalar perturbations: (A, B,C, E) Tensor perturbation: l:?lj = hii/ 2

~

Vector perturbations: (Ez'; 3@) GW produced by quantum effects during inflation



MAGNETIC PART OF WEYL TENSOR

Weyl curvature tensor Cabed may be split into electric and magnetic parts:

. o
Euy = Cuypou’u

1 O 87
B, = 5nwm(ﬂ’ Vguﬁu

(1)

First order: | B;; :5kl(i8kh/'(1)l

) Bi(]?) _ Ekl(iak 1 (2)1
J

7)

/

Consists of second order hl§2) and

quadratic first order scalar terms

Second order:



PLAN:

Obtain tensor
. |perturbation

Extract B;; from Convert to Fourier

numerical relativity code > |Space and invert the

simulations of inflation curl

, T

Consider other second order in il S o TSR /
scalar perturbations gauge invariant w| "“?;.:“ % /
variables such as the Cotton York | o/ 28 - |
Tensor. | *‘;:,., ¥ ";: 8 7/
Establish the physical observable/ Wa e ) ‘//
gravitational wave strain being X ; /

measured.

H;,=h"+H?
i U A

Compare with Ericka’s results to

validate h;.l) and extend to

scalar modes Hl :(].2)
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