p-adic Dynamics and the Failure of Newton's Method (Part 2)

Annalaura Pegoraro

In collaboration with Jingyi Le and Ethan Sosin

Supervised by Prof. Holly Krieger

27 August 2025

Background

Given a polynomial f, recall the Newton map $N_f(x) = x - \frac{f(x)}{f'(x)}$. Then, Newton's sequence (x_n) is defined by $x_{n+1} = N_f(x_n), x_0 \in \mathbb{Q}$.

Background

Given a polynomial f, recall the Newton map $N_f(x) = x - \frac{f(x)}{f'(x)}$. Then, Newton's sequence (x_n) is defined by $x_{n+1} = N_f(x_n), x_0 \in \mathbb{Q}$.

Theorem (Faber-Voloch)

Newton's sequence (x_n) converges p-adically to a root of f for infinitely many primes p, and fails to p-adically converge for infinitely many primes p.

The same results hold for McMullen's map.

Background

Given a polynomial f, recall the Newton map $N_f(x) = x - \frac{f(x)}{f'(x)}$. Then, Newton's sequence (x_n) is defined by $x_{n+1} = N_f(x_n), x_0 \in \mathbb{Q}$.

Theorem (Faber-Voloch)

Newton's sequence (x_n) converges p-adically to a root of f for infinitely many primes p, and fails to p-adically converge for infinitely many primes p.

The same results hold for McMullen's map.

Definition

The natural lower density of a set of primes S is

$$\delta(\mathcal{S}) = \liminf_{X \to \infty} \frac{\#\{p \in \mathcal{S} \mid p \le X\}}{\#\{p \le X\}}$$

Conjecture (Faber-Voloch)

Let $C(\mathbb{Q}, f, x_0)$ be the set of primes for which (x_n) converges p-adically to a root of f. Then the natural density of the set $C(\mathbb{Q}, f, x_0)$ is zero.

For instance, take the polynomial $f(x) = x^3 - 1$ and a starting point x_0 . We can study the behaviour of

$$\delta(X) = \frac{\#\{p \le X \mid (x_n) \text{ converges to a root of } f \text{ in } \mathbb{Q}_p\}}{\#\{p \le X\}}.$$

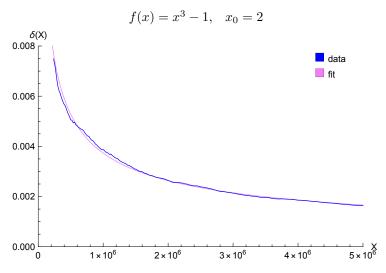


Figure: Plot of $\delta(X)$ for X up to 5,000,000.

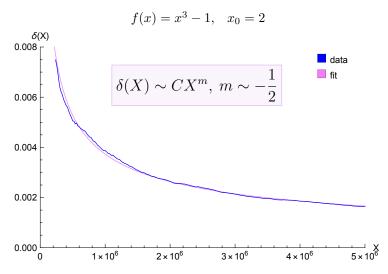


Figure: Plot of $\delta(X)$ for X up to 5,000,000.

$$f(x) = x^3 - 1, \quad \delta(X) \sim CX^m$$

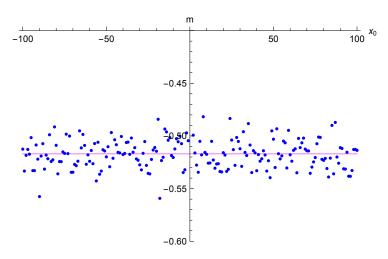


Figure: Plot of m for different values of x_0 .

$$f(x) = x^3 - 1, \quad \delta(X) \sim CX^m$$

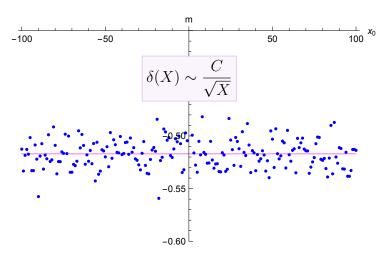


Figure: Plot of m for different values of x_0 .

Root bias

Faber and Voloch also studied the polynomial $g(x) = x^3 - x$, which has roots $\{-1, 0, 1\}$.

Question Does Newton's sequence converge p-adically more often to +1 or -1?

The data they collected seemed to suggest a bias towards the root +1.

We now study the behaviour of the ratio

$$r(X) = \frac{\#\{p \le X \mid x_n \to +1 \text{ in } \mathbb{Q}_p\}}{\#\{p \le X \mid x_n \to -1 \text{ in } \mathbb{Q}_p\}}.$$

Root bias

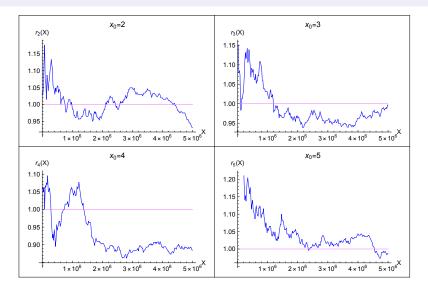


Figure: Plot of r(X) for X up to 5,000,000.

Question Given a prime p and a starting point x_0 , how do we know if (x_n) converges p-adically to a root of f?

Question Given a prime p and a starting point x_0 , how do we know if (x_n) converges p-adically to a root of f?

Theorem (Faber-Voloch)

After discarding finitely many primes p, Newton's sequence (x_n) converges p-adically to a root of f if and only if $f(x_n) \equiv 0 \mod p$ for some n.

After discarding finitely many primes, the sequence $(x_n \mod p)$ is well defined and eventually periodic.

Let's consider $f(x) = x^3 - 1$, $x_0 = 2$.

Then,
$$N_f(x) = \frac{2x^3 + 1}{3x^2}$$
, $x_{n+1} = N_f(x_n)$.

For all the following primes the only root of f modulo p is $\alpha = 1$, so to satisfy the condition $f(x_n) \equiv 0 \pmod{p}$, it is sufficient to check if the reduced sequence $(x_n \mod p)$ hits 1.

Let's consider $f(x) = x^3 - 1$, $x_0 = 2$.

Then,
$$N_f(x) = \frac{2x^3 + 1}{3x^2}$$
, $x_{n+1} = N_f(x_n)$.

For all the following primes the only root of f modulo p is $\alpha = 1$, so to satisfy the condition $f(x_n) \equiv 0 \pmod{p}$, it is sufficient to check if the reduced sequence $(x_n \mod p)$ hits 1.

$$p = 5$$
 $x_0 = 2, x_1 \equiv 1 \pmod{5}$

Let's consider $f(x) = x^3 - 1$, $x_0 = 2$.

Then,
$$N_f(x) = \frac{2x^3 + 1}{3x^2}$$
, $x_{n+1} = N_f(x_n)$.

For all the following primes the only root of f modulo p is $\alpha = 1$, so to satisfy the condition $f(x_n) \equiv 0 \pmod{p}$, it is sufficient to check if the reduced sequence $(x_n \mod p)$ hits 1.

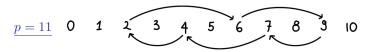
$$\underline{p=5} \qquad x_0=2, \, x_1 \equiv 1 \pmod{5}$$

Let's consider $f(x) = x^3 - 1$, $x_0 = 2$.

Then,
$$N_f(x) = \frac{2x^3 + 1}{3x^2}$$
, $x_{n+1} = N_f(x_n)$.

For all the following primes the only root of f modulo p is $\alpha = 1$, so to satisfy the condition $f(x_n) \equiv 0 \pmod{p}$, it is sufficient to check if the reduced sequence $(x_n \mod p)$ hits 1.

$$p = 5$$
 $x_0 = 2, x_1 \equiv 1 \pmod{5}$



 $\underline{p=17}$ $x_0=2, x_1\equiv 0 \pmod{17}, x_2$ will have a power of 17 in the denominator and so will all subsequent iterates

Back to the theory

As a consequence of Chebotarev's Denisty Theorem, the following theorem holds.

Theorem (Faber-Towsley)

Newton's sequence (x_n) fails to p-adically converge for a set of primes p with positive lower density.

Question Does this hold also for McMullen's map?

Back to the theory

As a consequence of Chebotarev's Denisty Theorem, the following theorem holds.

Theorem (Faber-Towsley)

Newton's sequence (x_n) fails to p-adically converge for a set of primes p with positive lower density.

Question Does this hold also for McMullen's map?

Theorem

McMullen's sequence (x_n) fails to p-adically converge for a set of primes p with positive lower density.

A rational map is a quotient

$$T(z) = \frac{a_d z^d + \dots + a_0}{b_d z^d + \dots + b_0} \in \mathbb{C}(z)$$

with no common factor and a_d, b_d not both zero. The *orbit* of a point $\alpha \in \mathbb{C} \cup \{\infty\}$ is the sequence

$$\mathcal{O}(\alpha) = \{ T(\alpha), T^2(\alpha), T^3(\alpha), \dots \}$$

Definition

A point α is *periodic* if $T^n(\alpha) = \alpha$ for some n. The smallest such n is called *period*. If α is periodic of period n, then we say $\mathcal{O}(\alpha) = \{\alpha, T(\alpha), ..., T^{n-1}(\alpha)\}$ is an n-cycle.

Question What dynamical features do Newton's and McMullen's maps have in common?

...with superattracting behaviour

Question What dynamical features do Newton's and McMullen's maps have in common?

Definition

A fixed point $\alpha \in \mathbb{C}$ is superattracting if $T'(\alpha) = 0$.

...with superattracting behaviour

Question What dynamical features do Newton's and McMullen's maps have in common?

Definition

A fixed point $\alpha \in \mathbb{C}$ is superattracting if $T'(\alpha) = 0$.

Definition

An *n*-cycle $\mathcal{O}(\alpha)=\{\alpha,T(\alpha),...,T^{n-1}(\alpha)\}$ is superattracting if $(T^n)'(\alpha)=0.$

...with superattracting behaviour

Theorem

Given a rational map T with a superattracting n-cycle there are infinitely many primes p for which the sequence (x_n) defined by $x_{n+1} = T(x_n)$ converges to the cycle.

Theorem

Given a rational map T with superattracting n-cycles, the sequence (x_n) defined by $x_{n+1} = T(x_n)$ fails to p-adically converge for a set of primes p with positive lower density.

References & Aknowledgments

Thank you!