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We want to approximate partial differential equations of
the form

∂u

∂t
= Lu+ f, (x, t) ∈ Ω× R+

given a well-posed differentiable operator L and suitable
initial and boundary conditions. Let φ be a sufficiently
smooth, orthonormal system of functions in L2(Ω), such
that ⟨φm, φn⟩ =

∫
Ω
φm(x)φn(y)dx = δm,n,m, n ∈ Z+.

Then, a spectral method is an approximation of the so-
lution to this equation in the form u(x, t) ≈ uN (x, t) =∑N

n=0 ûn(t)φn(x), where the coefficients û are obtained by
imposing Galerkin conditions on the equation and solving
ODEs of the form

dûm

dt
=

N∑
n=0

û⟨Lφn, φm⟩+ ⟨f, φm⟩, m = 0, . . . , N

How do we pick an appropriate orthonormal system? The
solution to our equation must be stable, which is to say
that it must converge as N tends to infinity, this conver-
gence must be quick enough to be usable, with ûn → 0 for
each n ≫ 1 as n → ∞, and finally each extra step from k∆t
to (k + 1)∆t should have a low cost.

We guarantee this by studying an orthonormal system
Φ = {φn}∞n=0 ∈ C1(Ω) differentiation matrix. This is a
natural linear map Φ → Φ

′
produced by it, defined by

φ
′

n =
∑∞

k=0 Dn,kφk, n ∈ Z+.
If we consider the function u as a vector of each of its

coefficients. As u can be written as an infinite sum of the
components of φ, the differentiation matrix D will send u
to its derivative u′.

Lemma. If every ϕn obeys zero Dirichlet conditions, D is
skew-Hermitian.

An orthonormal system with a skew-Hermitian
differentiation matrix is a stable orthonormal sys-
tem.

There are two approaches to finding spectral solutions,
T-systems and W-functions. When defining T-systems, we
impose a requirement that the differentiation matrix is tridi-
agonal. However, in my research we exclusively inspected
W-functions.

A function w is a weight function if it is non-negative, if
each of its moments

∫∞
−∞ xnw(x)dx are bounded and if the

zeroth moment is positive.
An orthogonal polynomial sequence (OPS) is a se-

quence of polynomials which obey the equation: ⟨Pn, Pm⟩ =∫ b

a
w(x)Pn(x)Pn(x)dx = δm,n.
If we have a weight function which generates an

OPS, we can define the n-th W-function by ϕn(x) =√
w(x)pn(x), n ∈ N0.
As this results in the same equation on the standard

functional inner product as an OPS does on its weighted
inner product, we immediately have an orthonormal sys-
tem.

Additionally, we have the following lemma,

Lemma. D is skew symmetric if and only if w(a) = w(b) =
0.

In one dimension, intervals either have zero finite end-
points, in which case they do not have a boundary that
conditions can be imposed on, one finite endpoint or two
finite endpoints. We solve PDEs with one finite endpoints
using the Laguerre W-function, orthogonal on (0,∞) with
weight function xαe−x and the Jacobi W-function, orthogo-
nal on (−1, 1) with weight function (1−x)α(1+x)β . Specif-
ically, we use the ultraspherical W-function, where α = β.
Closed form expressions for these W-functions can be found
in Iserles and Webb.

As the W-function system is formed by multiplying the
weight function by an orthogonal polynomial, we can use
properties of the weight function to observe properties of the
W-function. See that Laguerre and ultraspherical functions
obey Dirichlet conditions on their endpoints, and therefore
have a skew-symmetric differentiation matrix. In general, if
we set boundary conditions on the k-th derivative, then we
find the Laguerre W-function with α = k and the ultras-
pherical W-function with α = β = k fulfill these conditions.

What if we have general Dirichlet conditions, instead of
zero or constant Dirichlet conditions?

On a line, this is easy. Take the PDE ∂u
∂t = Lu +

f(u, t), t ≥ 0, x ∈ [−1, 1]. Then, apply the initial condi-
tion u(x, 0) = u0(x) and the boundary conditions u(−1, t) =
a−(t), u(1, t) = a+(t). We can construct the appropriate
linear interpolation µ(x, t) = 1

2 (1−x)a−(t)+
1
2 (1+x)a+(t),

set v(x, t) = u(x, t)− µ(x, t), producing the equation

∂v

∂t
= Lv + f(t, v + µ) + Lµ− ∂µ

∂t
with initial condition and zero Dirichlet conditions,

which we can solve using a spectral method.
We can use the method of Hermite interpolation to ex-

pand to higher order conditions on a line. However, in two
or more dimensions, general boundary conditions become
more tricky. For Dirichlet conditions in two dimensions this
is already solved, and we can interpolate within a triangle:
see a forthcoming paper from Iserles. Higher dimensions
and higher order conditions remain an open problem.
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