Combining Physics Informed Neural Networks with Learned Regularisation’

Inverse problems occupy a central role in scientific imaging, aiming to reconstruct an unknown parameter x € X from
indirect and noisy measurements

y=Ax+ec, (1)

where X and Y are Hilbert spaces, and A : X — Y is a forward operator, in our case the Radon transform.
However, equation (1) is frequently ill-posed. One solution to this problem is the use of variational regularisation

argmin || Ax —y|[3+Af (x), )

where f : X — R is the so-called regulariser and the parameter A > 0 balances data fidelity with the regularisation
penalty. This regulariser allows the user to incorporate prior information about x. While traditional approaches use
knowledge-driven regularisers, the advancements of deep learning suggest to learn a regulariser from the data, the
data-driven regulariser. To accomplish this, the technique of learning adversarial regularisers (ARs) is employed.?
While the AR is often able to achieve high-quality reconstructions, it lacks provable properties, leading to issues
when applied in very ill-posed scenarios, requiring various heuristics, like early stopping, for sustained performance.
Such heuristics are oftentimes hard to establish in practice. As a consequence, deep input convex neural networks
were used to learn an AR which allowed to devise efficient and provable algorithms for reconstruction.®> However,
convexity is on the other side of the spectrum. By virtue of strict guarantees, one gets sustainable performance in the
very ill-posed problems, but overall worse numerical performance. Therefore, the convex non-convex network is of
particular interest. Here, the regulariser is kept non-convex in a sufficiently structured way to guarantee the convexity
of the overall objective. This is accomplished by choosing the regulariser R(x) := R“"*“(x, Ax) as a combination of a
weakly convex function over the data space and a convex function over the parameter space,* where

R (x,y) =R (x) +R™ (y). ®)

The structural similarity index measure (SSIM) is an index frequently
used in medical imaging to evaluate the quality of the reconstruction
and takes values in the interval [0, 1], where 1 corresponds to perfect
similarity. Figure 1 shows that although all reconstruction methods coune i s e lelceroned e Aserosed e A cereed mace

already perform very well, there is still some room for improvement.
Existing methods often treat the optimisation process in isolation
from the learned regulariser itself, employing classical descent

schemes. This project aimed to address this limitation by incorporat- SSMi023 - SSIMQ.75 - SSIM0.32 - SSIM:0.68
ing physics-informed neural networks (PINNs) into the regulariser
learning. PINNs are leveraged to solve the underlying Hamilton-

. ) ; . . > Figure 1: Reconstructed images along with the
Jacobi equation alongside learning the regulariser, providing access g1 by & &W

to the Moreau envelope of the regulariser at no extra inference cost. corresponding SSIM.
The underlying idea is that the proximal mapping of a function
. 1
proxtf(x) = argm1n{2—||x—z||2+f(z)} (4)
zeR™ t
can be approximated by prox, ¢(x) = x —tVu(x, t), where
(.30 = min | £(2) + v~z ©)
u(t,x) := min f(z 51X —2

is the Moreau envelope of the regulariser.” This Moreau envelope is a special form of the Hopf-Lax formula which
gives a solution to the Hamilton-Jacobi equation

ut+%||Vu||2 = 0, inR"x(0,T]
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Access to the envelope will not only lead to faster reconstructions, but would also provide ways to find global solutions
in non-convex settings. To adapt the ACR network architecture accordingly, we will use insights from low-dimensional
PINN examples.
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