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Using dolphin whistles to identify species.  

 
Dolphin whistles form time-frequency contours that are complex, overlapping, and 
unpredictable [1]. These features make automatic detection, classification and 
localisation of whistles difficult and labour-intensive. However, all such whistles fall 
within a fixed range of time and frequency parameters [2]. It has previously been 
demonstrated that a dolphin whistle detector can be constructed in MATLAB using 
this information [3, 4] and it is hoped to build on the achievements of that project by 
identifying which of the thirty-three species of marine dolphins produced the 
whistle. The project will start with a brief literature search for dolphin whistle 
classification techniques and a review of the theory behind any that are found. Then 
it will proceed to collect and analyse a set of the previously recorded dolphin 
whistles available at various internet sites, to extract the time and frequency 
statistics and then to determine the differences between a limited selection of 
species. Given this information, the main challenge in this project will be to develop 
a pattern recognition algorithm which identifies signals that match the specific set of 
parameters for a particular species, whilst rejecting interference such as ambient 
noise and transient sounds. This algorithm could be based on the previous MATLAB 
whistle detector [3]; algorithms published in the literature, or could take an entirely 
new approach. Finally, the probability of detection and false alarm rate of the 
algorithm will be assessed using a different set of previously recorded whistles. 
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Flow noise reduction in sonar systems.  

 
Flow noise in a sonar system is caused by non-acoustic pressure fluctuations in the 
immediate vicinity of the receiving transducer [1]. These fluctuations only arise if 
sonar and water are in relative motion, e.g. if the transducer is towed or attached to 
the hull of a moving vessel. In this situation, a hydrodynamic boundary layer forms 
between the moving sonar and the stationary water at some distance away. The 
pressure fluctuations are caused by turbulence in this boundary layer.  A 
characteristic feature of flow noise is that it is inversely proportional to frequency 
cubed [2]. It has been observed that large reductions in flow noise could be achieved 
by surrounding the sonar transducer by a streamlined housing, usually called a sonar 
dome. Domes reduce flow noise by minimising turbulent flow and by transferring 
the source of flow noise to a distance from the transducer. The main challenge of 
this project will be to investigate how one might determine the optimum shape for a 
sonar dome for a given frequency band and transducer size over a range of realistic 
vessel speeds. The acoustic characteristics of the dome material should be taken into 
account [e.g. 3], along with the thickness required to resist deformation due to 
hydrodynamic forces and any internal structure within the dome. 
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Matheuristic Approaches for Improving Performance of MATLAB Mixed 
Integer Linear Programming Solver 
 
 
 

Abstract 
Mixed Integer Linear Programming problem (MILP) involves minimising a linear objective function, 
subject to linear constraints, where some of the variables have to be integer. Furthermore, if some of 
the variables in a MILP problem are required to be binary (i.e. either 0 or 1), the resulting problem is 
called a 0-1 MILP problem [7]. 

 
Various combinatorial optimization problems, including a wide range of practical problems in 

business, engineering and science can be modelled as 0–1 MILP problems [7].  A number of special 

cases of the 0–1 MILP problem, such as knapsack, set packing, cutting and packing, network design, 

protein alignment, travelling salesman, etc., are known to be NP-hard [4] and many examples still 

remain hard to solve, even with the rapid development of computing resources. 
 

Matheuristics are techniques for solving optimization problems: they are derived by hybridization of 

metaheuristics and mathematical programming methods. An essential feature of matheuristics is the 

exploitation of the mathematical model of the problems of interest; therefore they are sometimes also 

called “model-based” metaheuristics [2, 6]. In the field of MILP problems, matheuristics are known to 

be able to improve the performance of commercial state-of-the-art solvers. Some examples of 

methods that were proven to outperform IBM® ILOG® CPLEX® for solving 0-1 MILP problems can be 

found in [1, 3, 5]. 

 
Starting from a review of existing matheuristic methods for solving 0-1 MILP problem, including the 

latest advances in the field in the last couple of years, the goal of the project will be to compare 

several matheuristic methods implemented in MATLAB® and report the results, summarising the 

performance of the methods, with respect to solution quality (as compared to optimal solution - if one 

exists) and computational time required. Specifically, the aim of the research will be to compare the 

performance of various matheuristics with that of the built-in MATLAB intlinprog solver and 

investigate if the performance of intlinprog can be improved in a similar way as that of IBM ILOG 

CPLEX. 
 

Subject to time permitting, the student will be welcome to suggest further improvements to some of 

those methods, beyond the current state-of-the-art. 
 

In summary, the project can be divided into the following stages: 
 

1)   literature review 

2)   gathering problem instances 

3)   implementation of solution method(s) in MATLAB 

4)   performance comparison of different methods and summary of results 

5)   suggestions for further research to improve the current state-of-the-art 
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Subspace Identification Methods for Simulation of 3- phase Rotating Equipment and 

Fault Detection based on Residual Analysis 
 
 

Introduction and requirement for this project 
 

Electric motors are used in industry to power a very wide range of industrial equipment.  In many of 

these industrial applications, reliable and predictable performance  of  the  motor  and  driven  

equipment  system  are  extremely important.  Undetected faults or inappropriate operating 

conditions can lead to equipment breakdowns and loss of efficiency, and hence there is a 

requirement for robust techniques to detect these problems.  One approach is to analyse the 

frequency components found in the motor current. 
 

The electric current drawn by the motor depends on the behaviour of the combined motor and 

driven equipment system, including not only the applied external load, but also internal 

phenomena such as developing faults.    These faults can cause variations in the current drawn by 

the motor which can be seen as  distortions  on  the  current  waveform.    Since  distortions  to  

the  current waveform can also be caused by distortions on the voltage waveform, identifying the 

features associated with equipment faults requires a method for distinguishing the  distortions to  

the  current  waveform  that  have  NOT  been caused by distortions on the voltage waveform. 
 

Established techniques using mathematical modelling via system identification techniques work 

well but can suffer certain limitations that restrict their usability in some circumstances, particularly 

where noise is present in the reference signals. 
 

This project is about identifying, testing and demonstrating alternative approaches in order to 

overcome these issues. 
 

Project briefing 
 

The subspace identification techniques (4SID) constitute a good alternative to classical 

identification methods (prediction error and least squares, see [3]), and especially for multiple-input 

and multiple-output (MIMO) linear systems. Three main basic subspace-based approaches are 

considered for solving system identification problems: Multivariable Output Error state Space 

(MOESP) [4], Numerical algorithm for Subspace State Space System Identification (N4SID) [5], and 

Canonical Variate Analysis (CVA) [4]. There is no optimal criterion for selecting one of the techniques 

amongst them, and characteristics like ill- conditioning of the problem needs to be taken into 

consideration (see [6]). 
 

Relevant Mathematical aspects 
 

Consider a Linear Time-Invariant (LTI) discrete-time state space model, described by 
 

x k +1= A xk + B u k +w k  ( 0 ) 
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where x k ∈ R is the n  -dimensional state vector at time k   , uk ∈ R is 
 

the input vector, yk ∈ R 
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real matrices, and {w k }    , { vk } are zero mean, stationary ergodic state and output 

disturbance or noise sequences, uncorrelated with {uk } and the initial 

state of (1), with covariances satisfying the relation 
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where    ε     denotes the expected value operator and    δ pq        is the Kronecker delta symbol. 

The matrix pair (  A   ,   C   ) is assumed observable, and (  A   ,( B       Q1/ 2    
)) controllable. A 

particular model, in innovation form, is 
 

xk +1= A xk + B uk + Kek ( 0 ) 
 

 

yk =C xk + D uk +ek ( 0 ) 
 

 

where   {ek }     is a white noise sequence, and K is the Kalman gain matrix (see [1] 
 

for detailed explanation). 
 

In system identification problems, the system order,   n  , and the quadruple of system matrices (  

A   ,   B   ,   C   ,   D  ) have to be determined (up to a system similarity transformation) using the  

input and output sequences,    {uk }       and 

{ yk }    ,   k =1: t   . In addition, and depending on the purpose of the model, the Kalman gain 

matrix   K    in (3), as well as the state and output noise covariance matrices in (2) may also need to 

be identified. 

In the framework of this project, the identified model is used for simulation purposes (i.e. by setting   

K = 0  , see [2]) and fault detection. For instance, given 

the initial estimate   x̂1     , and the trajectory   {uk }    , the simulated output can be computed 

recursively using the formulas 

ŷk =C x̂ k + D̂ uk ( 0 ) 
 

 

x̂k +1= ̂A x̂ k + ̂B uk  ( 0 ) 



 

where the estimated quantities have been marked by hat signs. The difference between the 

estimated and the real output(s) - referred to as residual(s) - is then used for fault detection 

by analysis of the Power Density Spectrum of the residual(s). 
 

Background and Project Structure 
 

Starting from a review of the existing 4SID methods for simulation purposes, the goal of the 

project will be to compare several of those methods implemented in SCILAB and VISUAL 

BASIC (VB), summarizing the performance of the methods with respect to: 
 

- Convergence and stability of the results for different datasets of the same motor-

equipment, 
- Quality of the residual analysis, 
- Optimal user-define parameters, and 
- Computational time required. 

 

The student may decide to implement one or more 4SID techniques, or combine them to 

improve the performance of the existing ones. 
 

In summary, the project can be divided into the following stages: 
 

a) Literature review, 
b) Gathering problem instances, 
c)  Implementation of solution method(s) into SCILAB and/or VB, d) 
Performance comparison of different methods, 
e)  Optimization of user-define parameters for the selected method(s), and f)  
Suggestions for further research for improving the current state-of-art. 
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Twinkling in sonar systems.  

 
Turbulence and other inhomogeneities in the water column cause fluctuations in 
propagating acoustic signals in the same way that turbulence in the interstellar 
medium causes stars to twinkle [1,2]. The amplitude fluctuations bring about signal 
fading and failure to detect targets well within the theoretical range of the system. 
Phase fluctuations, however, cause loss of directivity and angular resolution in 
receiving arrays, spreading of transmitted beams, variations in the apparent arrival 
direction of signals and fluctuations in their arrival time. Fluctuations also result in an 
occasional high peak in the signal amplitude, allowing sources or targets to be 
detected at ranges much greater than predicted by the conventional sonar equation 
[3]. The aim of this project will be to model the underwater medium as a random 
phase- changing screen [4] and predict the detection range that might be obtained 
using these occasional high peaks. 
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TSi 

Optimization techniques for neural nets [numerical] 
 

In the last decade artificial neural nets have become practically useful, being used commercially in 

handwriting  recognition  (automatic  letter  sorting)  and speech recognition.  Applications are now being  

found  in  many  other  classification  or  recognition  tasks (e.g. image  labelling  and  fraud detection). In 

the near future  it is likely that computer games and robotics  will include more and larger neural nets: the 

problem then being the number of parameters. 
 

The resurgence of neural nets is due to a number  of reasons: the internet  is a large and readily available 

source of training and test data; algorithms for many of the difficult  tasks such as learning algorithms and 

how to implement  short term memory have been found; and the computing power available is sufficient 

to train large nets (millions of weights) in a reasonable time (i.e. days). If the nets  could  be  trained  more  

rapidly  or  more  accurately  then  progress  in  the  field  could  be accelerated- it is this problem that will 

be explored in this project. 
 

A neural net consists of nodes that  take signals from many other  nodes or the input, sum them 

according to  a  set of  weights and apply a monotonic, usually non-linear  function  to the sum to produce 

an output. Training a neural net means finding the weights. During training, the information available is in the 

form of weight derivatives. There are standard batch optimization techniques that can be used if the full 

training set is used (e.g. conjugate gradients, LBFGS- see [1]) but if the data sets are large and highly 

redundant- which is often the case- it is quicker to train on a subset of the training data, a "mini-batch", and 

then use a different training set on the next mini-batch. This leads to  a  stochastic gradient  which  breaks 

the  assumptions of  the  batch  optimization  techniques. A number  of  stochastic  gradient  techniques  

have  been  used  [2,3]:  back  propagation  (gradient descent), back propagation  with  (Nesterov) 

momentum,  etc.; and also a range of techniques for overcoming problems with  widely differing 

component magnitudes: adaptive step sizes and scaling strategies (e.g. rprop, rmsprop). 
 

The project  will  compare  a  new  algorithm  which only  uses the  gradient  direction  with  existing 

algorithms  to  determine  its strengths and weaknesses. The model problem  will be to identifying hand-

written digits in the MNIST database using single and multi-layer classifiers. The new method is based on a 

particular discretization of the following updates: 

 
ds  g dt  

= alsiT9f 
 

dp  ( s  g) 
dt  =lsi  + PT9f 

 

where g  is the  gradient,  s an internal  search direction, and p the current  position. The precise 

discretization will be supplied. 
 

The project would suit a candidate with some programming experience. 
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Modelling the drug supply chain in clinical trials 
 

 

Clinical trials are  run  across   many  sites,  and  it  is necessary to  supply each site  with  the  drugs  that  are  

needed  for the  patients that it will treat. It  is important that  whenever  a patient turns up at a site  we 

can supply  them  with the  drugs  they  need;  failure  to do so is bad  for the  patient and  can  compromise the  

whole  trial.  The  manufacture, transport,  and  storage of all  these  novel compounds is slow and  difficult,  

so in order  to make rapid  progress and  develop new  medicines quickly  and  efficiently  we want  to only  

produce and  store  just enough  drug,  whilst controlling the  risk of being unable  to supply  a patient  with the  

drugs  that they  need. 
 
For our  purposes  we can  model  the supply  chain  as a tree,  with  a factory  as the root  node.  This may supply 

one or more depots, w h i c h  may supply other depots or sites directly (and  so on).  So depots and  sites  each 

stock  some  level of drug, which is decreased  as they supply  patients or child depots  and sites.  But  as the 

level of drug  decreases they  are  free to order  from  their  upstream. 
 
Patients arrive at a site randomly  (say, according  to a Poisson process with known --or assumed --·rate) 
and  are  then  randomized to  a treatment arm.   Within each  treatment arm  patients may - randomly 
- undergo dose  escalations or reductions that  unexpectedly change their   need  for  drug  from  that 
which  is expected. 
 
A number  of questions may be explored  within  this  project, for example: 
 
 
1.  Optimal strategy: How and  when should  sites and  depots  order  from their upstream? Can  anything 

analytical be clone?  We want  to  minimize the costs  of manufacture, shipping, and  storage, but  also 

control  the  risk of being unable  to supply  a patient  with  the  drugs  that  they  need.  Is there  a good  

numerical  approach to finding  the optimum strategy? 
 
2.  Constrained supply, few patients, many  sites:  if patients that qualify  for the  trial are uncommon  it's  

necessary to open  many sites in order  to recruit enough  patients. Most sites  won't  recruit anyone;  some  

will recruit  many more  than average. If supply is so constrained that it's not  possible  to start  the  trial  

with  drug  at every site  how should  we proceed? 
 
3.  High cost comparator: if one of the drugs in the trial  has disproportionately high costs  how does  this  

affect supply  chain  strategies? 
 
4.  Anything else:  anything that the candidate deems  to be both useful and interesting. 
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Optimal rational  approximation and the double interval  Zolotarev problem in the complex 

plane 
 

 
Problem statement 

We consider the near best L∞ approximation of 1/
√

z  (or closely related functions) by a rational 

function, over certain curves in the complex plane. 

Zolotarev’s fourth problem [1], [6] provides the best rational approximation rn−1,n(z) of type (n −1, n) 

to γ = 1/
√

z over a real interval I = [a, b], where 0 < a < b in the sense that 
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z  
− rn−1,n(z)   

rn−1,n  = arg min 
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Here, rn−1,n  is a real rational function of type (n − 1, n) with a monic denominator, and I is the real 
interval [a, b]. Zolotarev’s explicit solution involves Jacobi elliptic functions to determine the interpolation 
points. To make use of this in applications,  we require the rational approximation rn−1,n(z) should be expressed 
as a Stieltjes continued fraction (or S-fraction) [2] with coefficients ĥ i  (0 ≤ i ≤ n − 1) and hi  (1 ≤ i ≤ n): 
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The Zolotarev rational approximation to 1/
√

z over the real interval [a, b] ∈ R+, where 0 < a < b, is 
readily extended to the real interval [c, d] ∈ R− where c < d < 0. Recently [5] showed how to construct a nearly-
optimal rational approximation to 1/

√
z on the union of two real intervals 

 
 

I = [a, b] ∪ [c, d] , where c < d < 0 < a < b . (3) 

For practical use in numerical analysis  (see Appendix), we actually require the best approximation 
 

to a modified square root γ1 = 1/ 

intervals in the complex plane: 

.
z +  z  , rather than γ = 1/

√
z over the union of two disjoint finite 

 

 
I = Ipr ∪ Iev  , (4) 



 

3i(z) <0 and <s(z) ≤ 0 ∀z  ∈ Ipr , (5) 

3i(z) >0 and <s(z) ≤ 0 ∀z  ∈ Iev  . (6) 
 

We use the same approach  from [5] to construct a near-best rational approximation over the union of 

complex intervals 
 
 

Ipr = [c, d] − iE , (7) 

Iev  = [a, b] − iE , E ∈ R+ . (8) 
 

The approach  we use to construct a near best approximation, akin to (1), follows [5], modified for complex 

intervals: 
 

• Construct the 2n1 Zolotarev interpolation points for 
√

z on the interval [a/b, 1] and the 2n2 inter- 

polation points for 
√

z on the interval [−1, −d/c] separately.  Here we require n1 + n2 = n. 
 

• Scale these interpolation points to [a, b] and [c, d] and shift them by −iE. 

• Calculate the unique complex rational interpolant rn−1,n(z) of type (n − 1, n) which interpolates 
γ1(z) at these 2n points. 

 
• Calculate the coefficients of the S-fraction (2). 

 

 

For practical reasons, the value of n used in the rational approximation rn−1,n(z) of type (n − 1, n) 
should be small, say 5 < n ≤ 20. We specify n and ask how to construct rn−1,n(z) which is the near 
best rational approximation to γ1(z) in order to minimize relative L∞ error in the sense of (1).  Since 
we solved a rational interpolation problem for γ1(z) rather than γ(z), the Zolotarev points are no longer 
optimal, but are nearly optimal for minimising the relative L∞ approximation error. 

 

The proposed project has two aims: 
 

• How well does the theory from [5], [2] for real intervals extend to complex intervals for approximating 

1/
√

z, and how good is the near-best approximation to γ1(z) in this case ? 
 

• What is the best numerical method for obtaining the rational approximation of γ1(z) over complex 
intervals and to obtain its S-fraction  representation  ? Is the problem  always well-posed ? 

 
 

A major part of the project would be to review the literature:  for example how far do the results from 
[3] provide an answer to this problem ?  A related problem of practical importance is when Ipr and Iev  are 
not simply intervals shifted parallel to the real axis, but are smooth, non-intersecting,  finite curves in the 3rd  

and 4th  quadrants of the complex plane. 

For a single interval I = [a, b] ∈ R+, it is known that all the coefficients ĥ i  and hi  in (2) are real, positive 
and increasing if rn−1,n  has negative simple poles and positive residues. Is it possible to say anything about 
the coefficients when there are two complex intervals ? 



 

2 

Appendix:  practical application 
 

This appendix has been added to motivate a practical application of near-best complex rational 

approximation. When constructing numerical boundary conditions for the wave equation, we require to 

approximate the so-called Neumann-to-Dirichlet (NtD) map on the boundary of a domain. Amazingly, in 

simple but representative cases, this can be reduced to the problem of finding the near best rational 

approximation of 1/
√

z  which minimizes the relative L∞ error, over certain intervals in the complex 
plane. Another practical application is in numerical linear algebra, when designing preconditioners  for iterative 
solution of the Helmholtz equation [4]. The use of complex intervals Ipr and Iev  is required in this case. 

 

The coefficients in (2) are used to construct numerical boundary conditions and represent the Neumann- to-

Dirichlet map for the scalar wave equation for u(x) 
 

 

k2(x)u + ∇2u = 0 , k2 ∈ C , 3i(k2) > 0 , <s(k2) ≥ 0 . (9) 

For x = (x1, x2) ∈ R2, consider the half space x1  ≤ 0. Assuming k to be constant, and taking the 
Fourier transform in the x2-direction with dual variable ξ2 leads to an equation for u(x1, ξ2): 

 

 

k2u + 
∂ u − ξ2

2 = 0 , (10) 
 
 

which has fundamental  solutions 

∂x1
2

 

 
√ 

2  2
 

u(x1, ξ2) = e±
 

(ξ2   −k )x1   . (11) 
 

Well-posedness requires the solution to be finite as x1  → −∞.  Hence, for ξ2  ∈ R, the symbol of the Neumann-

to-Dirichlet (NtD) operator at x1 = 0, for given ξ2, is −1/
}

ξ2
2 − k2. The practical application of the Zolotarev 

approximation to 1
√

z appears when (10) is discretized by a finite difference scheme - 
see [2], [5] and [4] for details. Consider the discrete form of (10), 

 
 

(k2 − ξ2
2)uj  + uj+1 − 2uj  + uj−1 

h2 

 

= 0 , (12) 

for −∞ < j ≤ 0, with mesh size h.  The dispersion relation corresponding to the well-posed solution leads to a 
one-sided numerical approximation of the inverse of the NtD (i.e. the Dirichlet-to-Neumann 

map or DtN), 
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z + 
 
, (13)

 
− 

u0 2 4 

where z = −(k2 − ξ2
2)h2.  This motivates the rational approximation for γ1(z).  The S-fraction (2) 

corresponds to a finite-volume discretization of (10), 
 

 

(k2 − ξ2
2)uj  + 1 

ĥ j
 

  
uj+1 − uj 

hj 

uj  − uj−1 

 
 

− 
hj−1 

 
= 0 , (14) 



 

for j = 1, . . . , n − 1, and with the additional constraint un  = 0.  The coefficients hj   

and ĥ j   are step lengths on primary and dual grids - see [2] and [5] for details. 
 

Only a very brief motivation for the problem has been given here in the interest 

of space. This relates the optimal numerical approximation of certain rational 

approximations in the complex plane to practical applications. 
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