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1C

Consider the eigenvalue problem

−
(
1− x2

)
y′′ + xy′ = n2y, −1 6 x 6 1, (⋆)

where n > 0 is an integer.

(a) Rewrite equation (⋆) in Sturm–Liouville form and determine the weight function
w(x). Show that any two eigenfunctions yn and ym of (⋆) with n 6= m satisfy the
orthogonality condition ∫ 1

−1
w(x)yn(x)ym(x) dx = 0 ,

provided the yn and their derivatives are finite at x = ±1. [5]

(b) The eigenfunctions yn of (⋆) are nth-order polynomials that satisfy yn(1) = 1.
Calculate y0, y1 and y2 explicitly. Also calculate I0 and I1, where

In =

∫ 1

−1
wy2n dx

is the weighted norm of yn. [5]

(c) Consider now the equation for Z(x),

(
1− x2

)
Z ′′ − xZ ′ + γ2Z = eεx , −1 6 x 6 1, (†)

where γ is a real non-integer constant and ε ≪ 1 is a positive real constant.

(i) By looking for an expansion of Z(x) in terms of the eigenfunctions yn of (⋆),
or otherwise, and expanding the right-hand side of (†) in powers of ε, find an
expression for Z(x) of the form

Z(x) = A+ εB + ε2C +O(ε3) .

You should write A, B and C in terms of γ, y0, y1 and y2. You do not need to
calculate any of the O(ε3) terms. [5]

(ii) Now suppose γ2 = 5. Using your answers to part (b), or otherwise, show that

∫ 1

−1

[(
1− x2

)−1/2
+

(
1− x2

)1/2]
Z(x) dx =

3π

10
+ ε2

π

80
+O(ε3) .

You may use without proof that I2 = π/2. [5]
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2B

Consider Laplace’s equation in plane polar coordinates

∂2Ψ

∂r2
+

1

r

∂Ψ

∂r
+

1

r2
∂2Ψ

∂φ2
= 0, (⋆)

where 0 6 φ < 2π is a periodic coordinate, Ψ(r, φ) is single-valued and finite inside the
disk of radius R > 0 centred at the origin.

(a) Use separation of variables to show that the general solution can be written as: [4]

Ψ(r, φ) = A0 +
∞∑

n=1

rn
[
An cos(nφ) +Bn sin(nφ)

]
.

(b) Assume Ψ satisfies the boundary condition Ψ(R,φ) = f(φ) for 0 6 φ < 2π. Show
that the value of Ψ at the centre of the disk is equal to the average value of f on
the circle of radius R. [6]

(c) Compute the values of A0, An and Bn when R = 2 and [6]

f(φ) =

{
1 if 0 6 φ < π

cos2(φ) if π 6 φ < 2π.

(d) Show that any solution Ψ of Laplace’s equation (⋆) on the disk attains its maximum
value on the boundary of the disk.

[Hint: Use part (b) to show that the value of Ψ at any point in the interior of the
disk is the average of Ψ on a circle surrounding that point.] [4]
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3B Consider Poisson’s equation on a volume V in R
3 with boundary conditions specified

on the surface S: {
∇2Φ = ρ(r) on V

Φ = f(r) on S.

(a) State the definition of a Green’s function for Poisson’s equation with the boundary
conditions on the surface S as above. [4]

(b) Using Green’s identity, show that the solution to Poisson’s equation can be expressed
as [4]

Φ(r′) =

∫

V
ρ(r)G(r, r′)dV +

∫

S
f(r)

∂G

∂n
dS

where G is the Green’s function.

(c) Write down the fundamental solution in R
3. Hence, find the Green’s function in the

case where V = {(x, y, z) ∈ R
3 : x2 + y2 + z2 6 1} is the interior of the sphere of

radius 1 centred at the origin. [6]

(d) Use the method of images to determine the Green’s function when
V = {(x, y, z) ∈ R

3 : x2 + y2 + z2 6 1, z > 0} is the interior of the half-sphere
(z > 0). [6]
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4A

(a) State Cauchy’s theorem and Cauchy’s formula, clearly stating the assumptions
about the integration contour used. [4]

(b) The extension of Cauchy’s formula is

f (n)(z0) =
n!

2πi

∮

C

f(z)

(z − z0)n+1
dz,

where f (n)(z) = dnf
dzn .

Use this formula to evaluate ∮

C

sin z

(z + 1)7
dz

where C is a circle of radius 5 with centre 0 and the contour is oriented in an
anticlockwise direction. [6]

(c) State the Residue theorem and use it to evaluate the contour integral of

g(z) =
eiz

z4 + z2 + 1

along the closed contour, oriented anticlockwise, consisting of LR = [−R,R] and
CR. Here LR is the line between −R and R and CR = {|z| = R, Im(z) > 0} is a
half-circle of radius R and centre 0, located above the real line.

Prove that

lim
R→∞

∫

CR

eiz

z4 + z2 + 1
dz = 0.

Therefore, evaluate ∫ ∞

−∞

cosx

x4 + x2 + 1
dx.

[10]
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5A

The Fourier transform f̃(ω) of a function f(t) is defined by

f̃(ω) =

∫ ∞

−∞

f(t)e−iωt dt.

(a) Show that the Fourier transform of f ′(t) is given by iωf̃(ω). Clearly state the
assumptions you made about f(t). [2]

(b) Consider the equation for forced damped harmonic motion

d2y(t)

dt2
+ 2κ

dy(t)

dt
+Ω2y(t) = f(t),

where κ,Ω > 0 are given constants and f(t) is a given function.

Show that ỹ(ω) can be expressed as ỹ(ω) = h̃(ω)f̃(ω), and write down h̃(ω). [2]

(c) Show that your expression in (b) can be inverted to find y(t) as

y(t) =

∫ ∞

−∞

G(t− ξ)f(ξ)dξ,

where

G(t) =

∫ ∞

−∞

s(ω, t)

(ω − ω−)(ω − ω+)
dω,

for some ω−, ω+ and s(ω, t) that you should determine. The convolution theorem
can be used without proof. [3]

(d) Evaluate G(t) for t > 0 by closing the contour and using the residue theorem for:

(i) Ω > κ;

(ii) κ > Ω;

(iii) κ = Ω. [7]

What is the value of G(t) for t < 0? Describe the behaviour of G(t) as t → ∞. [2]

(e) Use your results from parts (c) and (d) to determine y(t) when f(t) = cos κt and
Ω = κ. [4]
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6C

(a) Show that any second-order tensor T can be written in the form

Tij = Sij + ǫijkuk,

where S is a symmetric second-order tensor and u is a vector. Find explicit expressions
for Sij and uk in terms of Tij . [5]

(b) Maxwell’s equations for the electric and magnetic fieldsE(x, t) andB(x, t) in a vacuum
can be written as

∇ · E = 0, ∇ · B = 0,

∇×E+
∂B

∂t
= 0, ∇×B−

1

c2
∂E

∂t
= 0,

where c is a constant. Consider the second-order tensors TE
ij = ∂Ej/∂xi and

TB
ij = ∂Bj/∂xi. As in part (a), these can be written in terms of symmetric second-

order tensors SE and SB and vectors uE and uB, respectively.

(i) Calculate expressions for SE
ij , S

B
ij , u

E and uB in terms of E and B. [2]

(ii) Show that
∂uE

∂t
= −

c2

2
∇2B.

[4]

(iii) Let V denote a constant closed volume with surface A. By applying the
divergence theorem to a suitable integral expression, show that

∂

∂t

∫

V

(
uEi + uBi

)
dV =

∮

A

(
SE
ij − c2SB

ij

)
dAj .

[4]

(iv) Show further that
∂

∂t

∫

V
λdV =

∮

A
(B×E) · dA ,

for some scalar quantity λ that should be determined in terms of E, B and c. [5]

Natural Sciences IB, Paper 2 [TURN OVER



8

7A

(a) Write down a general Lagrangian of a system with n degrees of freedom undergoing
small oscillations, and state the polynomial equation for the normal frequencies. [5]

(b) A simple pendulum of mass M and length L is suspended from a cart of mass m that
can oscillate on the end of a spring of force constant k, as shown in the figure. The
cart is constrained to move in the horizontal direction only, and has a displacement
x(t) from its equilibrium position. The pendulum oscillates in the plane making
angle φ(t) with the vertical direction.

x

m

φ
L

M

k

(i) Assuming that the angle φ and displacement x remain small, write down the
system’s Lagrangian and the equations of motion for x and φ. [8]

(ii) Assuming that m = M = L = g = 1 and k = 2 (all in appropriate
units), where g is the constant acceleration due to gravity, find the normal
frequencies. For each normal frequency, find and describe the motion of the
corresponding normal mode. [7]

8B

(a) Let G,G′ be two finite groups and let f : G → G′ be a group homomorphism. Let
a ∈ G. Show that the order of f(a) is at most the order of a. Show that if f is an
isomorphism then a and f(a) have the same order. [6]

(b) If a, b ∈ G show that ab and ba have the same order. [7]

(c) Let G be a finite group where the order of each element is at most 2. Show that G
is abelian. [7]
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9B

(a) Let G be a group, and H1 and H2 two subgroups of G. Show that the claims (I)
and (II) below are equivalent. [10]

(I) H1 ∩ H2 = {1} and any element g ∈ G can be written as g = h1h2, where
h1 ∈ H1 and h2 ∈ H2.

(II) Any element g ∈ G can be written in a unique way as g = h1h2 where h1 ∈ H1

and h2 ∈ H2.

(b) Let H1 be the group of matrices generated by
{[

−1 0
0 1

]
,
[
1 0
0 −1

]}
and let H2 be the

(cyclic) group generated by the single matrix [ 0 1
1 0 ]. Also let G be the smallest group

containing H1 and H2. How many elements does G have? [5]

Show that G,H1 and H2 satisfy the condition (I). [5]

10A

(a) Let D be a representation of G; i.e. a homomorphism D : G → GL(n,C), where
GL(n,C) is the group of n× n invertible complex matrices. What does it mean for
a vector subspace W ⊂ C

n to be an invariant subspace with respect to D? What
does it mean for D to be irreducible? [4]

(b) Let D1 : G → GL(n,C) be a representation, and define

D2(g) = [D1(g
−1)]†

where † denotes the hermitian conjugate. Show that D2 is a representation. [6]

(c) Suppose that W is an invariant subspace of Cn with respect to D2. Show that W⊥

is an invariant subspace of Cn with respect to D1, where W⊥ is the vector space of
vectors orthogonal to W . Hence show that if D1 is irreducible then D2 must also
be irreducible. [10]

END OF PAPER
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