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1C

(a) Show that, for vector fields a and b in three dimensions,

a · (∇× b) = b · (∇× a)−∇· (a× b) .

[4]

(b) By applying the divergence theorem to a vector field a × F, where a is an arbitrary
constant vector, show that

∫

V
∇ × F dV = −

∫

S
F× dS , (⋆)

when S is the surface of a closed volume V . [4]

(c) Suppose now that V is the hemisphere {|x| 6 R, z > 0} with R > 0, and F =
(z, x2 + y2, 0) in Cartesian coordinates. Verify the equality in (⋆) by calculating both
integrals and showing that they take the form




0
α
0




in Cartesian coordinates, for some constant α that you should determine. [12]
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2C

Let u(x, t) denote the displacement of a string that is stretched horizontally between
x = 0 and x = L > 0, and fixed at these points such that u(0, t) = u(L, t) = 0. The
displacement of the string is subject to a resistance that is proportional to its velocity. In
terms of scaled variables, the displacement satisfies

∂2u

∂t2
=

∂2u

∂x2
− 2λ

∂u

∂t
,

where

λ =
π

L

(
M +

1

2

)

is the resistance coefficient, and M > 0 is an integer.

(a) By using separation of variables, write down ordinary differential equations for the
spatial and temporal dependence of the displacement, respectively. [4]

(b) The string is initially horizontal, and is subject to an impulsive initial velocity
∂u/∂t = f(x) at t = 0. Show that the general solution for the displacement can
be written in the following form:

u(x, t) = e−λt

[
M∑

n=1

An sin (αnx) sinh (Ωnt) +

∞∑

n=M+1

An sin (αnx) sin (ωnt)

]
.

Give expressions for each of αn, Ωn and ωn, in terms of M and L. [8]

(c) Suppose now that L = π and M = 3. Calculate the coefficients An when f(x) = e−x.

[Hint: You may find it helpful to use integration by parts to generate a recurrence
relation.] [8]
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3C

(a) Calculate the Green’s function G(x, ξ) that satisfies

d2G

dx2
−G = δ(x− ξ),

on the interval 0 6 x < ∞, subject to the boundary condition G(0, ξ) = 0, with
G remaining bounded as x → ∞. Hence write down, in integral form, the bounded
solution y(x) of

d2y

dx2
− y = f(x), 0 6 x < ∞, y(0) = 0. (†)

[8]

(b) Consider now the problem

d2u

dx2
+

2

x

du

dx
− u = g(x), 0 6 x < ∞, (∗)

where u(x) remains bounded throughout the domain.

(i) Show, by means of the substitution u = y/x, that (∗) reduces to the form of (†). [2]

(ii) Show further, using the Green’s function calculated in part (a), or otherwise,
that the solution of (∗) in the case

g(x) =

{
0 0 6 x < 1,

1 x > 1,

is

u(x) =

{
a(x) 0 6 x < 1,

−1 +Ae−x/x x > 1,

where the function a(x) and constant A should be specified. [10]
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4A

The Fourier transform of a function f(t) is given by

f̃(ω) =

∫ ∞

−∞
f(t)e−iωt dt.

(a) What is the Fourier transform of f̃(t) in terms of f (the duality property)? [2]

(b) What is the Fourier transform of f(bt) in terms of f̃ , where b is a constant (the
scaling property)? [2]

(c) Derive the Fourier transform of g(t) = e−αtu(t), where u(t) = 0 for t < 0 and
u(t) = 1 for t > 0, and α is a constant. [3]

(d) Using the linearity property of the Fourier transform, together with parts (b) and
(c), determine the Fourier transform of h(t) = e−α|t|. [3]

(e) Use parts (a) and (d) to determine the Fourier transform of s(t) = (1 + t2)−1. [3]

(f) Find the Fourier transform of v(t, T ) = 1

2
(u(t + T )− u(t− T )), where u is defined

in part (c) and T is a constant. [3]

(g) A signal z(t) is given by

z(t) =
sin t

πt
+

sin 2t

πt
.

Plot the graph of |z̃(ω)|2 versus ω and use Parseval’s theorem to find the energy E
of the signal z(t) defined as

E =

∫ ∞

−∞
|z(t)|2 dt.

[4]
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5B

Given a square matrix A we define the matrix exponential via the formula:

exp(A) = I+
∞∑

k=1

1

k!
Ak.

where I is the identity matrix.

(a) Show that for any invertible matrix P, exp(PAP−1) = P exp(A)P−1. [6]

(b) Show that if A is skew-Hermitian, then exp(A) = QCQ† where Q is a unitary
matrix, and C is a diagonal matrix with complex numbers of unit modulus on the
diagonal. Deduce that exp(A) is unitary. [7]

(c) Show that if A is Hermitian, then exp(A) is a Hermitian matrix with positive
eigenvalues. [7]

6B

(a) State the definition of a diagonalizable matrix. Give an example of a 2 × 2
diagonalizable matrix, and an example of a 2× 2 non-diagonalizable matrix. [5]

(b) Find the eigenvalues of the following symmetric matrix: [6]

M =



1 2 3
2 3 1
3 1 2


 .

[Hint: Consider the matrix vector product M
[
1
1
1

]
.]

(c) Show that the set of x = (x1, x2, x3) that satisfy xTMx = 0 and x1 + x2 + x3 = 0
consists of two infinite lines, where M is the matrix from part (b) (you do not need
to find the equations of these lines).

[Hint: Write M = PDPT with D diagonal, and P = [u1 u2 u3] where u1,u2,u3

are the eigenvectors of M.] [9]
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7A

(a) Let f(z) = u(x, y) + iv(x, y) be an analytic function of z = x+ iy for real x, y, u, v.
Prove that u and v satisfy the Cauchy-Riemann equations

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −

∂v

∂x
.

Define a harmonic function.

Verify that u(x, y) = ln(x2 + y2) defined on the complex plane with the origin
removed is harmonic and find a conjugate harmonic function v(x, y) (i.e. v such
that u+ iv is analytic). [8]

(b) Find a power-series expansion of the function f(z) = (3 − z)−1 about the point
z = 4i, and calculate the radius of convergence. [5]

(c) Find a power-series expansion of the function g(z) = (1− z2) exp(1/z) about z = 0.
Determine whether z = 0 is a pole or an essential singularity. Compute the residue
at z = 0. [7]

8B

Consider the second-order differential equation:

2x2y′′ − xy′ + (1 + x)y = 0.

(a) Show that x = 0 is a regular singular point. [2]

(b) Consider a solution of the form

y(x) = xσ
∞∑

n=0

anx
n, (a0 6= 0).

Determine the two possible values of σ for such a solution to exist. [6]

(c) For each value of σ determine the recursion relations satisfied by the an. Solve the
recursion relations and express an in terms of a0 in each case. [8]

(d) Find the radius of convergence of the power series solutions in each case. [4]
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9C

(a) State the Euler–Lagrange equation for the extrema of the functional

T [y] =

∫ b

a
f(x, y, y′) dx .

Write down the integral of the Euler–Lagrange equation if f = f(x, y′) does not
depend explicitly on y(x). [3]

(b) Light travels in a plane with refractive index µ(x), given in a piecewise manner by

µ2 =

{
1 + (1− x)2/3 x < 0

2 + x x > 0.

A light ray is fired from a point (x, y) = (−α, 0), where α is a positive constant, and
is picked up by a receiver on the line x = α. The travel time of the ray along a path
y(x) is given by the functional

T [y] =

∫ α

−α
µ(x)

√
1 + y′2 dx .

Suppose that the ray crosses x = 0 with a slope y′ = 1.

(i) Determine a piecewise expression for the slope y′(x) of the path of least time for
the ray. [4]

(ii) Hence calculate the path of least time y(x) in terms of α. [4]

(iii) Suppose that the slope of the light ray at the receiver x = α is half of its initial
slope. Determine the value of α in this case. [2]

(iv) Suppose instead that the light ray is fired with an initial slope y′ = 1/2.
Determine the value of α in this case, and find and sketch the path of the light
ray. At what value of y does the ray hit the receiver? [7]
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10C

A plate with thermal diffusivity κ(r) occupies the region r 6 1, where r is the radial
polar co-ordinate. The temperature T (r, t) of the plate is axisymmetric and satisfies

∂T

∂t
=

1

r

∂

∂r

(
rκ(r)

∂T

∂r

)
,

with T = 0 at r = 1.

(a) By looking for separable solutions of the form T = e−νtR(r), find an ordinary
differential equation satisfied by R(r). Write this equation in Sturm–Liouville form
and identify the weight function. [3]

(b) Assuming that R(r) and κ(r) remain finite for r 6 1, show that

ν

∫
1

0

rR2 dr =

∫
1

0

rκ(r)R′2 dr . (⋆)

[4]

(c) Explain briefly why (⋆) can be used to generate an upper bound for the decay rate
ν of the fundamental mode. [You may quote the Euler–Lagrange equation without
proof.] [4]

(d) Suppose now that κ(r) = rn, with n > 0.

(i) Using the trial function Rtrial(r) = 1− rq with q > 0, find an upper bound νtrial
for the decay rate of the fundamental mode as a function of q and n. [4]

(ii) If n = 0, determine the value of q that yields the best possible bound νtrial, and
give the value of that bound. Given that the corresponding trial temperature
profile is Ttrial(r, t) = e−νtrialtRtrial(r), sketch Ttrial(r, 0) and Ttrial(0, t). [5]

END OF PAPER
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