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SECTION A

1

Two intersecting lines are given by equations

r =



1
0
1


+ λ




1
−2
1


 , r =




1
−8
5


+ µ




0
−2
1


 ,

where λ and µ are real parameters. The lines lie in a common plane.

(a) What is the unit normal to this plane? [1]

(b) What is the shortest distance between the plane and the origin? [1]

2

Find all the solutions to

sinh z = 0 , [1]

and, separately, to

cosh z + 1 = 0 , [1]

where z is complex in both equations.

3

Consider the matrix (
eφ e−φ

e−φ eφ

)
,

where φ is a real number. Calculate the two eigenvalues of the matrix. [2]

4

Find the first two non-zero terms in the Taylor series expansion around x = 0 of
the function

ln(1 + x2)

1 + x2
. [2]

Natural Sciences IA, Paper 2



3

5

Show that f(xe−t) is a solution to the partial differential equation

∂f

∂t
+ x

∂f

∂x
= 0 ,

where f is any differentiable function of one variable. [1]

If f = ln(x) at t = 0, what is f for t > 0? [1]

6

Consider f(r), a differentiable function of radius, r =
√

x2 + y2 + z2. Find, in terms
of f and df/dr,

(a) the Cartesian components of ∇ sin[f(r)], [1]

(b) the value of ∇ · [k̂f(r)], where k̂ is the unit vector along the z-axis. [1]

7

Solve the following differential equations for y(x):

(a)
dy

dx
+ y = e−x , [1]

with initial condition y(0) = 0, and

(b)
dy

dx
+ (xy)2 = 0 , [1]

with initial condition y(0) = 1.
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8

For F = (sin θ)r/r, in spherical polar coordinates, calculate:

(a) the line integral ∫

C

F · dr ,

where C is the unit circle lying in the x-y plane, centred on the origin, and traversed
counterclockwise, [1]

(b) the surface integral ∫

S

F · dS ,

where S is the surface of the unit sphere centred on the origin. [1]

9

Find the coordinates of the two stationary points of u(x, y) = x3e−x2
−y2 not located

on the y-axis. [2]

10

A continuous random variable X takes values between 0 and π. Its normalised
probability distribution is

f(x) = α sinx ,

where α is a constant.

(a) What value does α take? [1]

(b) What is the mean of the distribution? [1]
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SECTION B

11S

(a) Four arbitrary vectors are denoted by a, b, c, and d. By considering the quadruple
product (a× b)× (c× d), or otherwise, prove that

d =
[b, c,d]

[a, b, c]
a− [c,d,a]

[a, b, c]
b+

[a, b,d]

[a, b, c]
c ,

where [a, b, c] = (a× b) · c 6= 0. [6]

(b) A point in space has position vector r0 and a line is given by the equation r−a = λt̂,
where λ is a real parameter and t̂ is a unit vector. Show that the perpendicular
distance from the point to the line is |t̂ × (r0 − a)|. [3]

Hence find the closest distance between the line given by

r =
λ√
2




1
1
0




and the parabola given by

r =




µ

(1 + 2
√
3)µ

µ2 − 4


 ,

where µ is a real parameter. [5]

[Hint: Consider d(ℓ2)/d(µ2), where ℓ is the perpendicular distance between any point
on the parabola and the line.]

(c) Consider the vector equation

2x+ n̂ × x+ n̂ (n̂ · x)2 = b ,

in which x is an unknown vector, |n̂| = 1, and n̂ · b = −1. Find x. [6]

[Hint: Take the scalar and vector products of the equation with n̂. Do not write out
the equation in components! ]
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12X

A scalar field in two dimensions can be represented either in terms of Cartesian
coordinates as f(x, y) or in terms of polar coordinates as g(r, φ). Thus at every point

f(x, y) = g(r, φ) .

The relationship between the coordinate systems is as usual:

x = r cosφ , y = r sinφ .

You are encouraged to use the shorthand notation:

(
∂f

∂x

)

y

= fx ,

(
∂f

∂φ

)

r

= fφ , etc.

and to write cosφ = c , sinφ = s.

(a) Show that (∂r/∂x)y = cosφ and find a similar formula for (∂r/∂y)x. [2]

(b) Show that (∂φ/∂x)y = − sinφ/r and find a similar formula for (∂φ/∂y)x. [2]

(c) Hence show that
fx = gr cosφ− gφ(sinφ)/r

and find a similar formula (involving only r, φ and the partial derivatives of g) for fy.
[4]

(d) Show that

fxx = grrc
2 − grφ

2sc

r
+ gφ

2sc

r2
+ gr

s2

r
+ gφφ

s2

r2
,

and find a similar expression for fyy. Hence determine a formula in polar coordinates
for ∇2f = fxx + fyy. [5]

(e) Take the particular case g = r2 sin 2φ.

(i) Calculate f and ∇f in terms of x and y. [2]

(ii) Sketch ∇f as a vector field in the positive quadrant of the x-y plane. Include
the contours of constant f . [3]

(iii) For the point (x, y) = (1, 2) calculate the gradient of f in the direction parallel
to (1, 1) (i.e. the directional derivative). [2]
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13R

(a) Consider the vector fields F = (−y, x) and G = (2xy2, 2yx2). Evaluate their line
integrals along the following closed paths in the x-y plane:

(i) The four sides of the unit square with corners at (0, 0), (1, 0), (1, 1) and (0, 1),
starting at (1, 0) and proceeding counterclockwise; [4]

(ii) The circumference of the unit circle centred on the origin, starting at (1, 0) and
proceeding counterclockwise. [4]

Are F andG conservative? If so, write the field(s) as ∇Φ where Φ is a scalar potential,
which you should find. [4]

(b) A directed three-dimensional curve, Γ, is given parametrically by

x = cos 6t, y = sin 6t, z = 8t,

with the parameter t increasing from 0 to π/12.

(i) Find the Cartesian coordinates of the start and end points of Γ and sketch the
curve in three-dimensional space. [3]

(ii) Evaluate the line integral
∫
Γ
Φ(x, y, z)ds where ds is an infinitesimal arclength

and Φ(x, y, z) = xy. [5]
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14V

A factory produces good (G) and defective (D) balls with probability p and 1 − p,
respectively. To test if a ball is good or defective, it is rolled along the x-axis starting from
the origin. The ball then comes to rest at some point from the following discrete set of
x-coordinates: xk = x0 + kδ, where x0 and δ are positive parameters and k = 0, 1, . . . , n,
where n is an integer. A ball stops at xk with probability gk if it is a good ball and with
probability dk if it is defective. In an experiment, a ball is produced and tested.

(a) Consider the particular case with n = 2, so that the discrete random variable X, the
coordinate of the stopping point, takes values X ∈ {x0, x1, x2}.

(i) Using notation, such as G∩xk (i.e. a ball is good and stops at X = xk), find the
sample space for the experiment assuming gk > 0, dk > 0 and 0 < p < 1. [2]

(ii) What is the probability that a good ball is produced and it stops at x0? [1]

(iii) What is the probability that a ball stops at x0? [2]

(iv) Find the probability P (D|x1). [2]

(v) Given that a ball stops at X > x0, find the probability that it is a good ball. [3]

(b) Consider the general case with n > 2.

(i) Find the probability that a ball stops at X > xk. [3]

(ii) Given that a ball stops at X 6 xk, find the probability that it is a good ball. [3]

(iii) If all the values of dk are equal to each other and n = 98, find the minimal value
of p for which P (G|x0) = 0.99. [4]
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15Y

(a) Find the general solutions to the following equations

(i)
d2y

dx2
− 2

dy

dx
+ 2y = 2x2 , [7]

(ii)
d2y

dx2
+ 3

dy

dx
+ 2y = e−x . [7]

(b) Consider the equation

x
d2y

dx2
− dy

dx
+

1

x
y = 0 , (†)

where x > 0. Show that if y(x) = xu(x), then u(x) is the solution of

x
d2u

dx2
+

du

dx
= 0 .

Hence find the general solution of equation (†). [6]
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16W

Let fixed points A and B in three-dimensional space be given by non-zero position
vectors a and b, respectively, and let r = (x, y, z).

(a) Simplify

(i) ∇ · (2(a · b)r + a) , [2]

(ii) ∇× ((a× b) + r) , [2]

(iii) ∇ · (a× (b× r)) , [3]

(iv) ∇× (a× (b× r)) . [3]

(b) Calculate the flux of the vector field F = a× b+ (a · b)r through

(i) the triangle OABO where O denotes the origin; [5]

(ii) the closed hemisphere with curved surface and base given by

x2 + y2 + z2 = R2 , 0 6 z 6 R ,

and
x2 + y2 6 R2 , z = 0 ,

respectively, where the parameter R > 0. [5]
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17R

Consider the set of simultaneous equations





x+ µy = b1 ,
x− y + 3z = b2 ,
2x− 2y + µz = b3 ,

where µ, b1, b2 and b3 are real parameters.

(a) Write down the above set in matrix form

Ar = b (†)

specifying all the elements of matrix A and column vectors r and b. [2]

(b) Demonstrate that equation (†) can be written as

xc1 + yc2 + zc3 = b ,

where c1, c2 and c3 are column vectors that should be specified. [2]

(c) Consider the particular case b = 0.

(i) Prove that a non-trivial solution to (†) exists only if [c1, c2, c3] = 0. Recall that
[c1, c2, c3] is the scalar triple product (c1 × c2) · c3. [2]

(ii) Find all values of µ for which equation (†) has a non-trivial solution. [2]

(iii) Hence, find all non-trivial solutions of equation (†) and interpret them geomet-
rically. [6]

(d) Consider another particular case b = (1, λ, 0)T with real parameter λ and with
µ = −1. Prove that a non-trivial solution exists only if

[c1, c2, b] = [c2, c3, b] = [c1, c3, b] = 0 .

Hence, find the value of λ, solve equation (†) and interpret the solution geometrically.
[6]
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18T

(a) Write down the Fourier series expansion of an arbitrary 2π-periodic function f
together with expressions for the coefficients, and state Parseval’s identity. [5]

(b) For 0 6 r < 1 and −π 6 θ < π, let

K(r, θ) =
1

2
+

∞∑

n=1

rn cosnθ,

and for an arbitrary 2π-periodic function f , let

yf (r, θ) =
1

π

∫ π

−π

K(r, θ − t)f(t) dt .

Prove that

yf (r, θ) =
a0
2

+

∞∑

n=1

rn(an cosnθ + bn sinnθ) , (†)

and find an and bn in terms of f . [5]

(c) Find the coefficients an and bn when

f(t) = f0(t) =

{
−1, −π 6 t < 0,
1, 0 6 t < π;

and write down an expression for yf0(r, θ) in the form (†). [5]

(d) Let D and dA be the unit disc and elementary area of integration, respectively. By
considering r, θ as polar coordinates, and using Parseval’s identity, prove that

∫

D

[yf0 ]
2 dA =

8

π

∞∑

n odd

1

np(n+ 1)
,

where p is a real positive number which you should find. [5]
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19W*

(a) Let f(x, y, z) = axy + z be subject to the constraint x2 + y2 + z − x = 0, where a
is a parameter.

(i) Using the method of Lagrange multipliers find the stationary points of
f(x, y, z). [5]

(ii) By considering f as function of two independent variables, i.e. f(x, y, z) =
f(x, y, z(x, y)), use the properties of the Hessian to determine the types of
the stationary points found in (i). [5]

(b) The function f(n0, n1, n2, . . .) = −∑
∞

k=0
[nk ln(nk) − nk] of an infinite number of

positive variables is subject to two constraints,

∞∑

k=0

nk = N and

∞∑

k=0

E0

(
1

2
+ k

)
nk = E ,

where N , E0 and E are positive constants.

Using the method of Lagrange multipliers show that the stationary point of
f(n0, n1, n2, . . .) subject to the above constraints occurs when

nk = 2N sinh

(
βE0

2

)
e−βE0( 1

2
+k) for all k , [4]

where β is a Lagrange multiplier. Show further that

E =
NE0

2
coth

(
βE0

2

)
. [6]
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20Y*

(a) Consider the partial differential equation

∂2u

∂x2
− ∂2u

∂y2
= 1. (†)

(i) By making the change of variables

ξ = x+ y, η = x− y,

show that the equation reduces to

4
∂2u

∂ξ∂η
= 1. [4]

Hence determine the most general form for u, the solution to (†). [4]

(ii) Suppose that the solution to (†) obeys the boundary conditions u = ∂u/∂y = 0
on y = 0 and takes the form

u = ax2 + bxy + cy2 + d ,

where a, b, c, d are real coefficients. Determine the coefficients. [4]

(b) The equation 3y = z3+3xz defines z implicitly as a function of x and y. Evaluate the
second partial derivatives of z with respect to x and y to verify that z is a solution of

∂2z

∂x2
+ x

∂2z

∂y2
= 0. [8]

END OF PAPER

Natural Sciences IA, Paper 2


