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1B

Let yn(x) and λn, n = 0, 1, 2..., be the real normalised eigenfunctions and corre-
sponding eigenvalues for the Sturm–Liouville eigenvalue problem

L yn(x) ≡ − d

dx

[
p(x)

dyn(x)

dx

]
+q(x)yn(x) = λnw(x)yn(x) , 0 6 x 6 1, yn(0) = yn(1) = 0 ,

with p(x) > 0 and w(x) > 0.

(a) State, without proof, the orthonormality property for two eigenfunctions yn(x) and
ym(x). [2]

(b) Given the completeness of the eigenfunctions, any real function f(x) satisfying the
same boundary conditions as yn(x) can be written as

f(x) =
∞∑

n=0

an yn(x) ,

for some real constants an. Show that

∫ 1

0
w(x)f(x)2 dx =

∞∑

n=0

a2n.

[5]

(c) Now consider the equation LY (x) = w(x)[α Y (x) + f(x)], where α is a constant,
α 6= λn for any n, and Y (x) satisfies the same boundary conditions as yn(x).

(i) Show that the solution of this equation can be written as

Y (x) =

∞∑

n=0

an
λn − α

yn(x) .

[6]

(ii) Suppose that λ0 = 1, λ1 = 2, and f = 2 [y0(x) + y1(x)]−α y1(x). Given that

∫ 1

0
w(x)Y (x)2 dx = 2 ,

and that α > 0, find α and express Y (x) in terms of the eigenfunctions yn(x). [7]
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2C

Consider the Laplace equation in elliptic coordinates

∂2Φ

∂µ2
+
∂2Φ

∂ν2
= 0 , (⋆)

where µ > 0, 0 6 ν < 2π is a periodic coordinate and Φ is single valued, so
Φ(µ, ν) = Φ(µ, ν + 2π).

(a) Use separation of variables to show that the general solution of (⋆) that is continuous
and single valued for µ > 0 can be written as

Φ = A0 +B0µ+
+∞∑

n=1

{[
An cosh(nµ) +Bn sinh(nµ)

]
cos(nν)

+
[
Cn cosh(nµ) +Dn sinh(nµ)

]
sin(nν)

}
,

where An, Bn, Cn and Dn are constants. [10]

(b) A line of constant µ is an ellipse with semi-major axis coshµ and semi-minor axis
sinhµ. Such an ellipse can be defined in terms of Cartesian coordinates as

x2

cosh2 µ
+

y2

sinh2 µ
= 1 .

The function Φ satisfies (⋆) in the region defined by a < µ < b. At the inner ellipse,
defined by µ = a, Φ has normal derivative

∂Φ

∂µ

∣∣∣∣
µ=a

= − cos(2ν) .

The outer ellipse, defined by µ = b, is held at Φ(b, ν) = cos(ν). Use separation of
variables to find Φ in the region a < µ < b. [10]
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3C

(a) Let φ be a scalar field that tends to zero as |r| → +∞ and satisfies the Klein-Gordon
equation

(∇2 − k2)φ = ρ ,

where ρ(r) tends to zero rapidly as |r| → +∞ and k is a real constant.

(i) Verify that

φ(r) =

∫

R3

G(r, r̃)ρ(r̃)d3r̃ ,

where G(r, r̃) satisfies

(∇2
r
− k2)G(r, r̃) = δ(3)(r− r̃) . (⋆)

[4]

(ii) Show that

G(r, r̃) = A
e−k|r−r̃|

|r− r̃| ,

and determine A. [6]

(iii) Let V be the half plane of R3 with z > 0. Use the method of images to
determine G(r, r̃) satisfying (⋆) everywhere on V , subject to G(z = 0) = 0,
and G→ 0 as |r| → +∞. [2]

(b) Let V be a region of three-dimensional space with boundary S. The scalar function
ψ(r) satisfies Laplace’s equation in V

∇2ψ = 0 ,

and ψ(r) = w(r) on S, where w(r) is an arbitrary scalar function defined throughout
V .

Show that ∫

V

(∇w) · (∇w) d3r >

∫

V

(∇ψ) · (∇ψ) d3r .

[Hint: Consider the inequality
∫
V
∇(ψ − w) ·∇(ψ −w) d3r > 0.] [8]
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4A

(a) Prove that if f(z) is analytic and has a simple zero at z = z0 then 1/f(z) has a
simple pole with residue 1/f ′(z0) there. What is the residue of g(z)/f(z) at z = z0
if g(z) is analytic at z0 and g(z0) 6= 0? [6]

(b) Consider the function

h(z) =
1

a− 1
2i (z − z−1)

,

where a > 1 and real. State the location of any singularities of h(z) and calculate
the residue of h(z) for the singularity that lies inside the unit circle. [6]

(c) Use the result of part (b) and contour integration to evaluate

∫ π

−π

sin θ

a− sin θ
dθ,

where a > 1 and real. [8]

5A

The Fourier transform of a function g(t) is given by

g̃(ω) =

∫ ∞

−∞
g(t)e−iωt dt.

(a) Given the Fourier transform f̃(ω) of the function f(t) derive Fourier transforms of
f ′(t), f ′′(t) and tf(t), assuming that f(t), f ′(t) → 0 as |t| → +∞. [6]

(b) Show that the Fourier transform of f(t) = exp(−t2/2) satisfies

df̃

dω
= h(ω)f̃ ,

for some h(ω) which you should find explicitly. Solve this equation to determine f̃
up to a multiplicative constant. [6]

(c) Let y(t) satisfy Bessel’s equation of order zero, so that

t y′′(t) + y′(t) + t y(t) = 0 .

Show that the Fourier transform of y(t) satisfies a first-order differential equation.
Solve this equation up to an arbitrary multiplicative constant. Using the inverse
Fourier transform, express the Bessel function y(t) in terms of an integral. [8]
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6B

(a) State the transformation law for a tensor of order n. Given vectors u and Ω, show
that the quantity

W = u × (Ω × u)

also transforms as a vector. [5]

(b) Let V denote the volume inside a sphere of radius a. Explain briefly why the integral

∫

V

xi1xi2 ...xin dV

is an isotropic tensor for any positive integer n. [2]

Hence show that
∫

V

xi dV = 0 ,

∫

V

xixj dV = αδij and

∫

V

xixjxk dV = 0 ,

for some constant α to be determined. You may state without proof the form of the
general isotropic tensors of order 1, 2 and 3. [5]

(c) Suppose now that Ω is a constant vector and ui = Ωi + β xi for a constant scalar
β. Determine W (x) and calculate

∫

V

Wi dV .

[8]
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7A Consider a system consisting of three particles of masses m1 = m,m2 = µm and
m3 = m, connected in that order in a straight line by two equal light springs of force
constant k.

(a) Write down the kinetic and potential energies of the system in terms of the
coordinates of the particles x1(t), x2(t), x3(t). Write down the corresponding
symmetric matrices for the kinetic and potential energies. [6]

Find the normal frequencies of the system and the corresponding normalised
eigenvectors. Describe the physical motions associated with these normal modes. [7]

(b) Consider the particular case in which µ = 2. Show that the three normal (angular)
frequencies are 0,Ω, and

√
2Ω where you should specify Ω in terms of k and m.

Show that the corresponding (unnormalised) eigenvectors are

x1 = (1, 1, 1)T , x2 = (1, 0,−1)T , x3 = (1,−1, 1)T .

Write down the orthogonality property of these eigenvectors with respect to the
kinetic matrix. [3]

(c) The masses are released from rest with initial displacements relative to their
equilibrium positions of x1 = 2ǫ, x2 = −ǫ and x3 = 0, for some real constant
ǫ. Determine their subsequent motions. [4]

8C

(a) Determine the elements of the cyclic group generated by the matrix

P =

(
1 1
−1 0

)
,

explicitly. [6]

(b) Construct the multiplication table of the following set of matrices, and verify that
they form a group under matrix multiplication:

I =

(
1 0
0 1

)
, A =

(
−1 0
0 −1

)
,

B =

(
0 1
1 0

)
, C =

(
0 −1
−1 0

)
.

[6]

(c) Prove that the set of elements of finite order in an Abelian group is a subgroup. [8]
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9C

Consider the set of matrices of the form

A =




1 a b
0 1 c
0 0 1


 ,

where a, b, c are integers modulo 5 (for example 7modulo 5 = 2).

(a) Show they form a finite group G under matrix multiplication. Show that G has 125
elements. [7]

(b) Show that the subset given by a = c defines an Abelian subgroup H. Find the order
of H and verify Lagrange’s theorem. How many distinct left cosets of H are in G? [7]

(c) Find the set of all the elements of G whose square is the 3 × 3 identity matrix. Is
the subset of G defined by b 6= 0 a subgroup of G? [6]

10A

(a) Define a representation D = {D(X)} of a group G and use the definition to prove
that the matrix associated with the inverse of X is the inverse of the matrix
associated with X. [4]

(b) A group G has four elements I,X, Y and Z, which satisfy X2 = Y 2 = Z2 = XY Z =
I. Show that all elements commute with other elements. Deduce the form of the
character table of the group G. [9]

(c) For which real numbers p do the matrices

D(I) =

(
1 0
0 1

)
, D(X) =

(
−1 0
0 −1

)
, D(Y ) =

(
−1 −p
0 1

)
, D(Z) =

(
1 p
0 −1

)
,

form a representation D of G? Find its characters. [7]

END OF PAPER
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