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1C

Consider the eigenvalue problem

d

dx

(

p(x)
dy

dx

)

+ q(x)y + λr(x)y = 0 , 0 6 x 6 ∞ , (∗)

where p(x) → 0 as x → 0 and as x → ∞, and r(x) > 0 such that r(x) → 0 as x → ∞.

Show that eigenfunctions ym and yn, associated respectively with distinct eigenval-
ues λm and λn, satisfy the orthogonality property

∫ ∞

0

r(x) ym yn dx = 0 , (†)

making it clear where you have to make assumptions about the behaviour of ym and yn
as x → 0 and x → ∞. [6]

Show that the equation

x
d2y

dx2
+ (1− x)

dy

dx
+ λy = 0 (‡)

may be written in the form (∗) and find the corresponding functions p(x) and r(x). Write
down the orthogonality property satisfied by ym and yn in this case. [6]

You are given that (‡) has eigenvalues λ0, λ1, λ2, . . . , where λn = n, and
corresponding eigenfunctions y0, y1, y2, . . . where each yn is a polynomial of degree n.

Find the functions y1 and y2, respectively linear and quadratic polynomials, and
show explicitly that they satisfy the orthogonality property (†). [8]
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The temperature T (x) in a volume V of a solid satisfies the steady-state diffusion
equation

∇2T = 0 , (∗)

in V. T is specified to be a given function Tb(x) on the boundary of V, the surface S.
Show that the solution of (∗) with the boundary condition T = Tb(x) on S is unique. [7]

A solid body consists of one substance in the volume V1 entirely enclosed within
a second substance occupying the volume V2. The outer surface of V2 is S2. The outer
surface of V1 and also the inner surface of V2 is S1. In this case the temperature T satisfies
the equations

∇2T = 0 in V1 ,

∇2T = 0 in V2 ,

with T a given function Tb(x) on S2, T continuous across S1 and α∇T.n|S+

1

= β∇T.n|S−

1

where the unit vector n is the outward normal to S1, |S+

1

denotes the limit as S1 is

approached from V2 and |S−

1

denotes the limit as S1 is approached from V1. α and β are
positive constants.

Show that the above equations and boundary conditions have a unique solution in
V1 and V2. [13]

[Hint: Start by applying the approach you used in the first part of the question to
V1 and V2 separately.]
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Derive the fundamental solution

G(x,y) = −
1

2π
log |x− y| ,

to the Poisson equation
−∇2G = δ(x − y) ,

in two-dimensional space. [4]

A point charge q is placed at the origin in the presence of a boundary along the line
x = b, with b > 0. The electrostatic potential V (x) satisfies

∇2V = qδ(x) .

Using the method of images, construct an expression for V (x) in x < b for the cases:

i. where the boundary is an earthed conductor, i.e. V = 0 on the boundary;

ii. where the boundary is an insulator, i.e. n.∇V = ∂V/∂x = 0 on the boundary.
(n is the unit normal to the boundary.)

In each case show explicitly that your solution satisfies the required boundary conditions. [8]

Now consider the case where there are two insulating boundaries at x = b and at
x = −b. Construct the corresponding image system which gives an appropriate solution
for V in −b < x < b. Write down expressions for V and for ∂V/∂y as series. [6]

Deduce that for y > 0,

∫ b

−b

∂V

∂y
dx =

q

2π

∞
∑

n=−∞

{

tan−1

[

(2n + 1)b

y

]

− tan−1

[

(2n − 1)b

y

]}

=
q

2
.

[2]
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State the residue theorem for the integral

∮

C
f(z) dz ,

where C is a closed contour and f(z) is analytic within C except for a finite number of
poles at z1, z2, . . . , zN . [4]

Consider the function f(z) = log z/(1 + zβ) where β > 1. Show that a branch cut
can be chosen so that, apart from isolated poles, f(z) is analytic in the region |z| > 0,
0 6 arg(z) < π. Identify all poles of f(z) in this region and calculate the corresponding
residues. [8]

Now, by considering the integral of f(z) around a suitable closed contour which
includes the real axis from z = ǫ (ǫ ≪ 1) to z = R (R ≫ 1) and which encloses a single
pole of f(z), show that

∫ ∞

0

log x

1 + xβ
dx = −

π2

β2

cos(π/β)

sin2(π/β)
,

and
∫ ∞

0

1

1 + xβ
dx =

π

β sin(π/β)
.

[8]
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The Fourier transform f̃(k) of a function f(t) and the corresponding inverse
transform are defined by

f̃(k) =

∫ ∞

−∞
e−iktf(t) dt , f(t) =

1

2π

∫ ∞

−∞
eiktf̃(k) dk .

Show that if

h(t) =

∫ ∞

−∞
f(s)g(t− s) ds,

then h̃(k) = f̃(k)g̃(k). [6]

Consider the differential equation

d2y

dt2
+ (a+ b)

dy

dt
+ aby = f(t) ,

with the constants a and b such that a > b > 0. The solution y(t) and its derivatives may
be assumed to tend to zero as t → ±∞.

Derive an equation relating ỹ to f̃ , carefully justifying all steps in your calculation.
Deduce that

y(t) =

∫ ∞

−∞
f(s)G(t− s) ds ,

and find the function G(t) by inverting G̃(k). [7]

In the case f(t) = e−|t| evaluate f̃(k). Assuming that a 6= 1 and b 6= 1, deduce an
expression for ỹ(k) and invert to deduce y(t). [7]
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[In this question you should assume three dimensions.]

Write down the transformation law for the components tij of a tensor of rank 2 and
the components uijkl of a tensor of rank 4 under rotation of the coordinate axes. [2]

What is an isotropic tensor? Show that aδij and bδijδkl + cδikδjl + dδilδjk, with a,
b, c and d constants and δij the Kronecker delta, are isotropic tensors. [4]

By considering rotations by π/2 about two different coordinate axes show that aδij
is the most general form of an isotropic tensor of rank 2. [4]

(You may henceforth assume that bδijδkl + cδikδjl + dδilδjk is the most general form
for an isotropic tensor of rank 4.)

Consider the tensors

Aij =

∫

VR

xixj |x|
2 dV ,

and

Bijkl =

∫

VR

xixjxkxl dV ,

where the volume VR is a sphere of radius R centred on the origin. Show that Aij and
Bijkl are isotropic tensors and determine their components. [6]

Consider the tensor

Cij =

∫

VR

{xixj|x|
2 + xixj(x.n)

2} dV ,

where n is a fixed unit vector. What are the eigenvectors and corresponding eigenvalues
of this tensor? [4]
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A mechanical system has three degrees of freedom and is described by coordinates
q1, q2 and q3, where q1 = q2 = q3 = 0 corresponds to a position of equilibrium of the
system. The kinetic energy T = 1

2

∑i=3

i=1

∑j=3

j=1
Tij(q)q̇iq̇j =

1

2
q̇TTq̇, defining a matrix T.

The potential energy is given by the function V(q).

Define the Lagrangian L of the system and write down the corresponding Euler-
Lagrange equations. What conditions must apply at the equilibrium position q1 = q2 =
q3 = 0? Calculate the leading-order non-constant terms in a Taylor expansion of V(q)
about this position, and hence show that these leading-order non-constant terms can be
written as 1

2
qTVq for some constant matrixV. Deduce the form of the Lagrangian and the

corresponding Euler-Lagrange equations for small disturbances from equilibrium. With
reference to this set of equations define the terms normal frequencies and normal modes. [5]

M

m m

µ

λ

µ

Consider a system consisting of a heavy horizontal bar of mass M , from the ends
of which two masses m hang on identical vertical springs, each with spring constant µ
and equilibrium length l. The bar itself is suspended from a fixed point by a spring with
spring constant λ and equilibrium length L. (The bar is constrained to remain horizontal.)
Define q1, q2 and q3 to be the vertical displacements of, respectively, the bar and the two
masses away from their equilibrium positions. Show that the relevant matrices T and V
(as defined above) take the form

T =





M 0 0
0 m 0
0 0 m



 , V =



















λ

L
+

2µ

l
−
µ

l
−
µ

l

−
µ

l

µ

l
0

−
µ

l
0

µ

l



















,

and hence construct the Lagrangian for this system. [6]

Hence for the case M = 2, m = 1, λ = 4, µ = 1, L = 1 and l = 1, derive the
corresponding normal frequencies and normal modes. [6]

Give a brief geometrical description of each normal mode. [3]
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Define the order |G| of a finite group G and the order of an element g ∈ G. [2]

Consider the Cartesian product of two groups G1 and G2. This is the set G1 ×G2

of all pairs (g
1
, g

2
) with the composition law

(g1, g2)(g
′
1, g

′
2) ≡ (g1g

′
1, g2g

′
2).

Show that G1 ×G2 is a group. What is the order of the group? [6]

Consider the order 2 group Z2 = {e, w}. Construct the multiplication table for the
order 4 group Z2 × Z2. [4]

Now consider the order 4 cyclic group Z4 = {e, a, a2, a3}. Show that the order 2
cyclic group Z2 = {e, a2} is a proper subgroup for Z4. Prove there are no other proper
subgroups for Z4. Hence, show that Z2 × Z2 is not isomorphic to Z4. [8]

9B

If H and K are subgroups of G, show that the intersection H ∩K is also a group. [6]

Consider D3, the group of symmetries of the equilateral triangle. D3 has six
elements: the identity (I); two rotations (A,B); and three reflections (C,D,E). Explain
their geometrical action on the equilateral triangle. Construct the multiplication table for
D3. Is this group abelian? [9]

How many order 2 subgroups are there in D3? List them. Are they normal
subgroups of D3? Justify your conclusion. Finally, show by explicit construction that
the union of two order 2 subgroups of D3 does not form a group. [5]
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[In this question, you may state without proof any theorems you use.]

Suppose G1 and G2 are groups, and D is a mapping D : G1 → G2. Give the
definition for the map D to be a homomorphism. What is the kernel of D, Ker(D)? [2]

Let S3 = {e, x, y, y2, xy, xy2} be the n = 3 symmetric group with

x2 = y3 = e , yx = xy2 , y2x = xy .

Verify by explicit calculation that, with z = exp(2πi/3),

R(x) =

(

0 1
1 0

)

, R(y) =

(

z 0
0 z2

)

, R(y2) =

(

z2 0
0 z

)

, (∗)

R(xy) =

(

0 z2

z 0

)

, R(xy2) =

(

0 z
z2 0

)

,

is a two-dimensional complex representation of S3. You can assume without proof that
(∗) is an irreducible representation. [7]

Given that the trivial representation of S3 is the one-dimensional complex represen-
tation T (s) = 1 where s ∈ S3, find the non-trivial one-dimensional complex representation
U : S3 → C

1. What is Ker(U)? Is U a faithful representation? [8]

Finally, given these results, deduce the number of conjugacy classes in S3. [3]

END OF PAPER
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