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MATHEMATICS (1)

Before you begin read these instructions carefully:

You may submit answers to no more than six questions. All questions carry the
same number of marks.

The approximate number of marks allocated to a part of a question is indicated in
the right hand margin.

Write on one side of the paper only and begin each answer on a separate sheet.
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Each question has a number and a letter (for example, 6A).

Answers must be tied up in separate bundles, marked A, B or C according to the
letter affixed to each question.

Do not join the bundles together.

For each bundle, a blue cover sheet must be completed and attached to the bundle.

A separate yellow master cover sheet listing all the questions attempted must also
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Every cover sheet must bear your examination number and desk number.
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1A

Let (r, θ, φ) be standard spherical polar coordinates in three dimensions, satisfying
the differential relation

dr = er dr + eθr dθ + eφr sin θ dφ .

Consider the vector fields defined as follows:

A(+) =
1
r

tan
θ

2
eφ (r 6= 0, θ 6= π),

A(−) = − 1
r

cot
θ

2
eφ (r 6= 0, θ 6= 0),

B =
1
r2

er (r 6= 0) .

(a) Give a clearly labeled sketch of the curves of constant θ and constant φ on the sphere
r = a . Draw in the corresponding unit vectors er , eθ , eφ at a point on the surface with
θ 6= 0, π ; are the unit vectors well-defined at θ = 0 or π? Comment briefly on the fact
that A(+) and A(−) are well-defined at θ = 0 and π, respectively.

[6]

(b) Calculate ∫
C

A(±) · dr

where C is a circle with r = a , θ = α and 0 6 φ 6 2π .
[4]

(c) Calculate ∇×A(+) and ∇×A(−).
[5]

(d) Evaluate ∫
S

B · dS

where S is the sphere of radius a, centre the origin. By dividing S into two parts (each
with boundary C) explain how this result is related to your calculations in parts (b) and
(c).

[5]

[Recall that

∇×A =
1

hrhθhφ

∣∣∣∣∣∣
hrer hθeθ hφeφ
∂/∂r ∂/∂θ ∂/∂φ
hrAr hθAθ hφAφ

∣∣∣∣∣∣
where hu = |∂r/∂u| for u = r, θ, φ.]

Paper 1



3

2A

(a) φ(x, y) is defined on a square 0 6 x, y 6 ` and obeys

∂2φ

∂x2
+
∂2φ

∂y2
= −λφ

with λ constant. Find all separable solutions with φ = 0 on the boundary of the square,
determining the resulting values of λ in the process.

[6]

(b) Calculate constants cmn such that∑
m,n>1

cmn sin
mπx

`
sin

nπy

`
= 1

for 0 < x, y < ` .

[4]

(c) A two-dimensional square slab with sides of length ` has temperature T (x, y; t) obeying

∂2T

∂x2
+
∂2T

∂y2
=

1
κ

∂T

∂t

with κ a positive constant. The temperature is initially equal to T0 throughout the slab,
but at t = 0 the material is immersed in a heat bath so that the temperature on the
boundary is zero for t > 0 . Find T (x, y; t) for t > 0 and show that for large t

T (x, y; t) ≈ 16T0

π2
sin

πx

`
sin

πy

`
e−2κπ2t/`2 .

[10]
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3A

Explain in outline the Green’s function approach to solving an equation of the
form

d2y

dx2
+

1
x

dy

dx
− y

x2
= f(x)

where y(x) with 0 < x <∞ is subject to certain boundary conditions.

[4]

Given that the general solution to the homogeneous problem with f = 0 is
y(x) = ax+ b/x, determine the Green’s functions for the boundary conditions:

(i) y(x)→ 0 as x→ 0 and x→∞ ; or (ii) y(x)→ 0, y′(x)→ 0 as x→ 0 .

[8]

Use your answers to calculate y(x) explicitly with each of the boundary conditions
(i) and (ii) when f(x) = 1 for 0 < x < 1 and f = 0 otherwise.

[8]

4A

(a) Given a function f(x), define its Fourier transform f̃(k) and write down the inverse
transform.

Let f(x) = 1− x for 0 < x < 1 and f(x) = 0 for x > 1 . Find f̃(k) in the cases where

(i) f(x) is an even function; (ii) f(x) is an odd function.
[10]

(b) State and prove Parseval’s Theorem. Use this to deduce that∫ ∞
0

sin4 u

u4
du =

π

3
.

[10]

[You need not discuss conditions for convergence of any integrals.]
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5B

When is a 3 by 3 complex matrix diagonalisable? Let A be a 3 by 3 matrix which is
not a multiple of the identity matrix such that characteristic equation of A is (λ−1)3 = 0 .
Show that A is not diagonalisable.

[5]

Diagonalise the matrix  2 −1 0
−1 2 0

0 0 3


and sketch the quadric surface

XTAX = 1

where XT = (x, y, z).
[12]

Does there exist a diagonalisable 3 by 3 complex matrix with exactly two distinct
eigenvalues? Give an example or show that one does not exist.

[3]

6B

What is a Hermitian matrix? Show that eigenvalues of a Hermitian matrix are real
and that eigenvectors corresponding to different eigenvalues are orthogonal with respect
to a standard inner product on Cn.

[8]

Is it true that if all eigenvalues of a matrix are real then this matrix is Hermitian?
Give a proof or a counter-example.

[4]

Let A,B be Hermitian matrices. Show that AB is Hermitian if and only if
AB −BA = 0 . Find a number c (real or complex) such that AB + cBA is Hermitian.

[8]
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7C

(a) State the Cauchy-Riemann equations obeyed by the real and imaginary parts,
u(x, y) and v(x, y) of an analytic function of a complex variable z = x+ iy .

Show that the curves u = const and v = const in the x, y plane intersect at right
angles.

Find a complex analytic function for which these curves are, respectively, y2 =
x2 + α and xy = β for real constants α and β 6= 0 .

[7]

(b) A complex function f(z) which is analytic and single-valued in an annulus
a < |z − z0| < b for some a and b , has a Laurent expansion of the form,

f(z) =
+∞∑

n=−∞
an (z − z0)n .

State the condition on the coefficients an such that,

(1) f(z) has a pole of order N at z = z0 , or

(2) f(z) has an essential singularity at z = z0 .

[4]

Give all singular terms (ie terms with n < 0) in the Laurent expansions of the
following functions around the points specified,

(i) f(z) = 1/ sinh3(z) at z = iπ .

(ii) f(z) = zN exp (−1/z) at z =∞ .

(iii) f(z) = exp (−1/z) at z = 0 .
[9]
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8A

Consider the series

y(x) = xσ
∞∑
n=0

an x
n , a0 6= 0 . (∗)

If the series converges, show that Bessel’s equation holds:

x2y′′ + x y′ + (x2 − ν2) y = 0 ,

where ν is a real constant, provided that

σ = ± ν , a1 = 0 , { (σ + n)2 − ν2 } an + an−2 = 0 for n > 2 .

Show that when ν = 1/2 these conditions yield two solutions which can be written in
terms of trigonometric functions.

[10]

Find the most general conditions on σ and an for (∗) to satisfy Legendre’s equation

(1− x2) y′′ − 2x y′ + λ (λ+ 1) y = 0,

where λ is some real constant. Referring only to the form of the differential equation,
what radius of convergence would you expect for any solution of the form (∗)? Show that
for particular values of λ > 0 which you should determine there are solutions (∗) which
exist for all x .

[10]
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9B

Derive the Euler–Lagrange equation for y(x) so that the integral

I =
∫ b

a

f(x, y, y′) dx

is stationary. Show that if f does not depend on x explicitly then

f − y′ ∂f
∂y′

is a constant.

[10]

Let F (y) be a differentiable function. Consider a line element in R3 and show that
the geodesics on the surface {(x, y, z) ∈ R3, z = F (y)} are given by (x, y(x), F (y(x)))
where ∫ √

1 +
(dF (y)

dy

)2

dy = ax+ b

for some constants a, b .
[10]
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10B

Let y, p, q and w be real valued functions defined on [a, b] ⊂ R such that p and w
are everywhere positive and

p(b) y(b) y′(b)− p(a) y(a) y′(a) = 0 .

Let

F [y] =
∫ b

a

(
p
(dy
dx

)2

+ qy2
)
dx , G[y] =

∫ b

a

wy2 dx .

Show that the stationary values of

Λ[y] =
F [y]
G [y]

are eigenvalues of the Sturm–Liouville eigenvalue problem

− d

dx

(
p(x)

dy

dx

)
+ q(x) y − λw(x) y = 0 (∗)

and that the functions which make Λ stationary are the corresponding eigenfunctions of
(∗).

[10]

Use a trigonometric trial function to estimate the lowest eigenvalue of the equation

d2y

dx2
+ λxy = 0 , y(0) = y(π) = 0 .

What is the sign of λe − λt where λe and λt are the estimate and the actual lowest
eigenvalues respectively.

[10]

END OF PAPER
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