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MATHEMATICS (2)

Before you begin read these instructions carefully:

You may submit answers to no more than six questions. All questions carry the
same number of marks.

The approximate number of marks allocated to a part of a question will be indicated
in the right hand margin.

Write on one side of the paper only and begin each answer on a separate sheet.

At the end of the examination:

Each question has a number and a letter (for example, 6C).

Answers must be tied up in separate bundles, marked A, B or C according to the
letter affixed to each question.

Do not join the bundles together.

For each bundle, a blue cover sheet must be completed and attached to the bundle.

A separate yellow master cover sheet listing all the questions attempted must also
be completed.

Every cover sheet must bear your examination number and desk number.
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1C In spherical polar coordinates (r, θ, φ), Poisson’s equation for an axisymmetric
electric potential Φ(r, θ) can be expressed as
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where ρ(r, θ) is the electric charge density and ε0 is a constant.

In the case when ρ = 0, use the method of separation of variables to obtain the
general solution for the potential Φ in terms of Legendre polynomials Pn(cos θ). You
should state clearly the differential equation in x satisfied by Pn(x). [11]

Suppose now that the charge density distribution is given by

ρ =
{

4ε0 cos θ , in 0 ≤ r < a;
0 , in r ≥ a.

On the assumptions that the potential and its derivative should be continuous everywhere,
and that Φ → 0 as r →∞, find the potential everywhere. [9]

[You may quote the result that P1(x) = x.]
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2C For functions Φ and Ψ defined in a volume V bounded by a surface S with outward
unit normal n, show that∫∫∫

V

(
Φ∇2Ψ−Ψ∇2Φ

)
dV =

∫∫
S

(Φ∇Ψ−Ψ∇Φ) · ndS .
[2]

Suppose that within the volume V , Φ satisfies Poisson’s equation

∇2Φ = σ(x) ,

where σ(x) is a known function. State the equation satisfied by a Green’s function G(x;x0)
for this equation, where x0 is a point within the volume V . Show that∫ ∫

S

∇G · ndS = 1 .
[3]

On the surface S, Φ satisfies the Neumann condition

n · ∇Φ = f(x) .

Choose, with justification, a suitable boundary condition for G(x;x0) on the surface S, and
hence derive an integral expression that specifies Φ(x0) up to an undetermined constant. [5]

In the case when V is the region z ≥ 0, use the method of images to calculate
G(x;x0). If σ = 0 throughout V , Φ → 0 as |x| → ∞, and on the surface z = 0

f = δ(x)δ(y) ,

find Φ. [10]

3A The complex variable z is given by z = x+ iy where x and y are real. The function
f(z) is

f(z) =
(
1− z2

) 1
2 ,

and is defined so that it is real and positive on the real axis in the range −1 < x < 1.
Explain how f(z) can be made single valued in the complex plane by the introduction of
cuts running along the real axis x < −1 and x > 1. Evaluate f(z) on the upper and lower
sides of both cuts. [5]

Explain how to use a complex contour to evaluate the integral

I =
∫ ∞

1

dx

x(x2 − 1)
1
2

.
[5]

Evaluate I. [10]
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4A Let f = u+iv be a complex differentiable function of a complex variable z = x+iy
where x, y, u and v are real. Derive the Cauchy-Riemann equations for u and v. [5]

Show that the Cauchy-Riemann equations imply that each of u and v satisfy
Laplace’s equation in two dimensions. [3]

Find the most general complex differentiable function f if

u = x2 − y2 , [5]

and also if
u = x/(x2 + y2) . [7]

5C Define the Laplace transform f̄(p) of a function f(t) defined for t ≥ 0. Derive
expressions for the Laplace transform of f ′(t) and tf(t). [5]

Evaluate f̄(p) when f(t) = tn for n = 0, 1, 2 . . .. [2]

Find one solution to the equation

tg′′ + (1− t)g′ + 2g = 0 ,

by first deriving an equation for ḡ′(p) (assuming that it is defined), by then solving that
equation for ḡ(p), and finally by inverting the transform. [13]

[You may quote the results that∫ ∞

0

tme−t dt = m! and
p− 3
p2 − p

=
3
p
− 2

p− 1
. ]
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6C (a) Given a non-zero vector vi , define

Pij = δij − vivj/vkvk ,

where δij is the kronecker delta.

Verify that Pij is a tensor, and show for any vector ui which is orthogonal to vi

that Pij satisfies (i) Pijvj = 0 and (ii) Pijuj = ui. [6]

(b) For any tensor Tik in R3, prove directly from the transformation property of a
tensor that the quantities

α = Tii, β = TikTki, γ = Tik Tkm Tmi

are invariant under rotation of the coordinate axes. [6]

Suppose now that Tik is a symmetric tensor. Express the invariants α, β and γ in
terms of the tensor’s eigenvalues. Deduce that the cubic equation for the eigenvalues λ is

λ3 + c2αλ2 + c1(α2 − β)λ + c0(α3 − 3αβ + 2γ) = 0 ,

where c0, c1 and c2 are constants to be determined. [8]

[The summation convention is assumed throughout this question.]

7B Consider four point particles, each of mass m, at the corners of a square, each pair
of particles being connected by a light unstretched spring of constant k (in total, therefore,
the system has six springs). Take the origin of coordinates at the centre of the square
with the four equilibrium points corresponding to (−1, 1), (1, 1), (−1,−1), (1,−1) for the
first, second, third and fourth particle respectively. Each of these particles is displaced
by (xi, yi), i = 1, 2, 3, 4 with respect to the equilibrium points. Find the potential energy
matrix. [6]

(i) Show that the modes (x1, y1, x2, y2, x3, y3, x4, y4) = (1, 0, 1, 0, 1, 0, 1, 0),
(0, 1, 0, 1, 0, 1, 0, 1), and (1, 1, 1,−1,−1, 1,−1,−1) correspond to zero frequency oscillations
and interpret the result. [4]

(ii) Determine the normal mode and frequency of oscillation corresponding to the
‘breathing mode’ in which all the particles move along radial lines away from the centre. [5]

(iii) Because of the reflection symmetry in the x−axis, the system is invariant under
the double interchange of y1 with −y3 and y2 with −y4. Therefore seek an eigenvector
of the form (x1, y1, x2, y2, x3, y3, x4, y4) = (0, α, 0, β, 0,−α, 0,−β), and determine α, β and
the frequency of oscillation. Deduce the normal mode and the frequency of oscillation for
the motion with the reflection symmetry in the y−axis. [5]

[Note: there is no need to solve the characteristic equation to find the eigenvalues
from the eigenvalue equation.]
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8A List the axioms satisfied by the elements of a group. Define the terms subgroup
and coset. Show that the order of a subgroup is a divisor of the order the group. [5]

By writing out the appropriate multiplication table verify that the set generated
by multiplications of the matrices

A =
(

0 1
1 0

)
, B =

(
0 i
i 0

)
,

satisfies the group axioms. [5]

List all the subgroups of the group. [5]

Give a complete set of cosets based on one of the subgroups. [5]

9A Explain what is meant by the statement that there is a homomorphism from the
group G to the group F . [4]

Define the kernel, K, of the map from G to F and show that K is a normal
subgroup of G. [10]

Show that there is a homomorphism from the group S3, the permutation group
on three objects, to the group S2, the permutation group on two objects. Describe the
homomorphism in detail and identify its kernel. [6]

10A The dihedral group D4 is the symmetry group of a square. List the five conjugacy
classes of D4, explaining the meaning of each element. [4]

Prove that the elements in each of the five classes are conjugate to each other. [6]

Calculate the character table of D4. [10]

[You may quote results based on the orthogonality theorem without proof.]
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