This booklet describes courses provided by the Faculty of Mathematics for students taking Natural Sciences or Computer Sciences. Its purposes are to provide:

(i) detailed schedules (i.e. syllabuses) for each of the courses;

(ii) information about the examinations;

(iii) a bibliography.

Queries and suggestions should be addressed to:

Faculty of Mathematics,
Centre for Mathematical Sciences,
Wilberforce Road,
Cambridge CB3 0WA
United Kingdom
(e-mail: undergrad-office@maths.cam.ac.uk).

All the relevant documentation is available on the Faculty of Mathematics World Wide Web Site (http://www.maths.cam.ac.uk/), where a section specific to the Mathematics Courses in the Natural Sciences Tripos (http://www.maths.cam.ac.uk/undergradnst/) is provided. Course materials for Part IA are available on Moodle at https://www.vle.cam.ac.uk/ and those for Part IB are on CamTools at https://camtools.cam.ac.uk
AIMS AND OBJECTIVES

The aim of the Faculty of Mathematics is to provide relevant service courses for the Natural Sciences and Computer Science Triposes. After completing Mathematics A or B (Part IA) and Mathematics (Part IB), students should have covered the mathematical methods required to provide a grounding in the mathematical techniques used either in the Physical Sciences courses of the Natural Sciences Tripos or in the Computer Science Tripos, as appropriate.

COURSES

Part IA

The following mathematics courses are provided for Part IA of the Natural Sciences and Computer Science Tripos.

- Mathematics, Course A
- Mathematics, Course B

Course A provides a thorough grounding in methods of mathematical science and contains everything prerequisite for the mathematical content of all physical-science courses in Part IB of the Natural Sciences Tripos, including specifically Mathematics, Physics A and Physics B. Course B contains additional material for those students who find mathematics rewarding in its own right, and it proceeds at a significantly faster pace. Both courses draw on examples from the physical sciences but provide a general mathematical framework by which quantitative ideas can be transferred across disciplines.

Students are strongly encouraged to take Course A unless they have a thorough understanding of material in Further Mathematics A-Level. As a guide, such students might be expected to have scored at least 95% in at least two (preferably three) FP modules. Some topics that look similar in the Schedules may be lectured quite differently in terms of style and depth. Both courses lead to the same examination and qualification. Mathematics is a skill that requires firm foundations: it is a better preparation for future courses in NST to gain a first-class result having pursued Course A than to gain a second-class result following Course B.

Each course consists of 60 lectures over three terms.

An additional scientific computing module organised by the NST Management Committee runs in Michaelmas Term; information regarding this module will be provided separately.

The following mathematics courses are provided by the Faculty of Biology for Part IA of the Natural Sciences Tripos, and are intended for students studying Biological subjects:

- Mathematical Biology
- Elementary Mathematics for Biologists

Mathematical Biology is intended for students who have taken a single mathematical A-level, or equivalent, and Elementary Mathematics for Biologists is intended for students who have not taken an advanced mathematics course.
Part IB

The following mathematics course is provided for Part IB of the Natural Sciences Tripos

• Mathematics

In order to take this course in Part IB of the Natural Sciences Tripos, it is recommended to have obtained at least a second class in Part IA Mathematics, course A or B. The material from course A is assumed. Students are nevertheless advised that if they have taken course A in Part IA, they should consult their Director of Studies about suitable reading during the Long Vacation before embarking upon part IB. The IB course consists of 58 lectures over the three terms, six assessed computational exercises and occasional examples classes.
EXAMINATIONS

In the examinations, formulae booklets will not be provided but candidates will not be required to quote elaborate formulae from memory. The use of calculators will not be permitted in the IA exam. Calculators of the kind approved by the Board of Examinations for use in the Natural Sciences Tripos will be permitted for the IB exam, but questions will continue to be set in such a way as not to require the use of a calculator.

Part IA: Mathematics, courses A and B

These courses are examined in two three-hour written papers, common to both courses, at the end of the year.

The written papers each consist of two sections, A and B. Section A on Paper 1 is based on the core A-Level syllabus.

All other parts of the written papers are based on these Schedules. Candidates may attempt all questions from Section A and at most 5 questions from section B.

Section A on each paper consists of up to 20 short-answer questions and carries a total of 20 marks. Section B on each paper consists of 10 questions, each of which carries 20 marks. Up to 2 of the questions in Section B of each paper are starred to indicate that they rely on material lectured in the B course but not in the A course. The examination paper shows, for each major subsection of a question, the approximate maximum mark available.

The questions in Section A have clear goals that carry 1 mark (correct) or 0 marks (incorrect or incomplete); no fractional credit is given and it is not necessary to show working. In Section B, partial credit may be available for incomplete answers and students are advised to show their working.

Part IB

This course is examined in two three-hour papers at the end of the year, together with six assessed computer practicals, the arrangements for which are described in a course handbook that will be distributed by the lecturer for the Mathematics course.

On each paper, candidates may attempt up to 6 questions. All attempts at a question are given a mark out of 20. The examination paper shows, for each major subsection of the question, the approximate maximum mark available.

The total credit available for the computer practicals is 24 marks: each of the six modules has a maximum mark of 4. A student who submits complete attempts at all the practicals should receive a mark of at least 20. In order to receive credit for the practical element, students are required to register electronically for the Computer Practical course using the instructions in the course booklet by 31 October 2014; the first two modules must be submitted in electronic form before the end of the Michaelmas term 2014; and all remaining modules must be submitted for assessment in electronic form by the end of the Lent term 2015. The student must also submit a signed declaration form stating that ‘The results achieved are my own unaided work’.

As with all mathematics examinations, the marks required for each class vary from year to year according to the difficulty of the examination and other factors.

1 Further copies are available from the Centre for Mathematical Sciences, the electronic version will also be available on CamTools

3
SCHEDULES

The schedules, or syllabuses, given on the following pages are determined by a committee which has input from all the Physical Science subjects in the Natural Sciences and from Computer Science and is agreed by the Faculty of Mathematics. The schedules are minimal for lecturing and maximal for examining; that is to say, all the material in the schedules will be lectured and only this material will be examined.

The numbers in square bracket at the end of paragraphs of the schedules indicate roughly the number of lectures that will be devoted to the material in the paragraph.

Part IA: Mathematics, course A

This course comprises Mathematical Methods I, Mathematical Methods II and Mathematical Methods III.

The material in the course will be as well illustrated as time allows with examples and applications of Mathematical Methods to the Physical Sciences.

Mathematical Methods I

24 lectures, Michaelmas term

Cartesian components. Spherical and cylindrical polar coordinates.

Complex numbers and complex plane, vector diagrams. Exponential function of a complex variable. exp (iωt), complex representations of cos and sin. Hyperbolic functions.

Revision for functions of a single variable of differentiation (including differentiation from first principles, product and chain rules) and of stationary values. Elementary curve sketching. Brief mention of the ellipse and its properties. Power series. Statement of Taylor’s theorem. Examples to include the binomial expansion, exponential and trigonometric functions, and logarithm.

Integration (including by parts and substitution). Examples to include odd and even functions and trigonometric functions. Fundamental theorem of calculus.

Elementary probability theory. Simple examples of conditional probability. Probability distributions, discrete and continuous, normalisation. Permutations and combinations. Binomial distribution, (p + q)^n, binomial coefficients. Normal distribution. Expectation values, mean, variance, \(\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2 \).

Extended examples distributed through the course.
Mathematical Methods II 24 lectures, Lent term

Ordinary differential equations. First order equations: separable equations; linear equations, integrating factors. Second-order linear equations with constant coefficients; \(\exp(\lambda x) \) as trial solution, including degenerate case. Superposition. Particular integrals and complementary functions. Constants of integration and number of necessary boundary/initial conditions. Particular integrals by trial solutions.

Double and triple integrals in Cartesian, spherical and cylindrical coordinates. Examples to include evaluation of \(\int_{-\infty}^{+\infty} \exp(-x^2) dx \).

Extended examples distributed through the course.

Mathematical Methods III 12 lectures, Easter term

Orthogonality relations for sine and cosine. Fourier series; examples.

Extended examples distributed through the course.
Part IA: Mathematics, course B

This course comprises Mathematical Methods I, Mathematical Methods II and Mathematical Methods III.

The material will be as well illustrated as time allows with examples and applications of Mathematical Methods to the Physical Sciences.

Mathematical Methods I 24 lectures, Michaelmas term

Complex numbers and complex plane, vector diagrams. Exponential function of a complex variable. \(\exp(i\omega t) \), complex representations of cos and sin. Hyperbolic functions.

The integral as a sum, differentiation of an integral with respect to its limits or a parameter. Approximation of a sum by an integral. Stirling’s approximation as an example. Schwarz’s inequality. Double and triple integrals in Cartesian, spherical and cylindrical coordinates. Examples to include evaluation of \(\int_{-\infty}^{+\infty} \exp(-x^2) \, dx \).

Elementary probability theory. Simple examples of conditional probability. Probability distributions, discrete and continuous, normalisation. Permutations and combinations. Binomial distribution, \((p + q)^n \), binomial coefficients. Normal distribution. Expectation values, mean, variance, \(\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2 \).

Extended examples distributed through the course.
Mathematical Methods II 24 lectures, Lent term

Differentiation of functions of several variables. Differentials, chain rule. Exact differentials, illustrations including Maxwell's relations. Scalar and vector fields. Gradient of a scalar as a vector field. Directional derivatives. Unconditional stationary values; classification using Hessian matrix. Conditional stationary values, Lagrange multipliers, examples with two or three variables. Boltzmann distribution as an example. [8]

Orthogonality relations for sine and cosine. Fourier series; examples. [2]

Extended examples distributed through the course. [3]

Mathematical Methods III 12 lectures, Easter term

Linear second-order partial differential equations; physical examples of occurrence, verification of solution by substitution. Linear superposition. Method of separation of variables (Cartesian coordinates only). [4]

Extended examples distributed through the course. [2]

Part IA: Elementary Mathematics For Biologists

This course is given by the Faculty of Biology. It is intended for students who do not have A-level Mathematics. The aim of the course is to provide an introduction to some of the mathematical models and statistical techniques which are used in Part IB and Part II biology courses. Practicals include practical computing using software packages to illustrate and reinforce the material given in lectures.

Part IA: Mathematical Biology

This course is given by the Faculty of Biology. It is intended for students who have taken a single A-level in Mathematics, but no prior knowledge of statistics or computing is required. The aim of the course is to provide an introduction to some of the mathematical models and statistical techniques which are useful to biologists. Practicals include practical computing, using software packages to illustrate and reinforce the material given in lectures.
Part IB: Mathematics

This course comprises Mathematical Methods I, Mathematical Methods II, Mathematical Methods III and six Computer Practicals. The material in Course A from Part IA will be assumed in the lectures for this course. Topics marked with asterisks should be lectured, but questions will not be set on them in examinations.

The material in the course will be as well illustrated as time allows with examples and applications of Mathematical Methods to the Physical Sciences. Separate occasional examples classes will be given as stated in the lecture list.

Mathematical Methods I 24 lectures, Michaelmas term

Vector calculus
Suffix notation. Contractions using δ_{ij} and ϵ_{ijk}. Reminder of vector products, grad, div, curl, ∇^2, and their representations using suffix notation. Divergence theorem and Stokes’ theorem. Vector differential operators in orthogonal curvilinear coordinates, e.g. cylindrical and spherical polar coordinates. Jacobians. [6]

Partial differential equations
Linear second-order partial differential equations; physical examples of occurrence, the method of separation of variables (Cartesian coordinates only). [2]

Green’s functions
Response to impulses, delta function (treated heuristically), Green’s functions for initial and boundary value problems. [3]

Fourier transform
Fourier transforms; relation to Fourier series, simple properties and examples, convolution theorem, correlation functions, Parseval’s theorem and power spectra. [2]

Matrices

Elementary Analysis

Series solutions of ordinary differential equations
Homogeneous equations; solution by series (without full discussion of logarithmic singularities), exemplified by Legendre’s equation. Classification of singular points. Indicial equation and local behaviour of solutions near singular points. [3]
Computer practicals

There are no lectures for this course, which consists of six computational exercises related to material elsewhere in the Mathematics course.

Topics for the exercises will include:
2. Solving ordinary differential equations.
3. Root finding.
5. Matrix algebra.

Mathematical Methods II

Sturm-Liouville theory
Self-adjoint operators, eigenfunctions and eigenvalues, reality of eigenvalues and orthogonality of eigenfunctions. Eigenfunction expansions and determination of coefficients. Legendre polynomials; orthogonality.

Conditional stationary values and the calculus of variations
Lagrange multipliers, examples with two or three variables. Euler-Lagrange equations and examples.

Variational principles; Fermat’s principle; Hamilton’s principle and deduction of Lagrange’s equation, illustrated by a system with:

\[
L = \frac{1}{2} m_1 \dot{x}_1^2 + \frac{1}{2} m_2 \dot{x}_2^2 - V(x_1 - x_2) .
\]

Variational principle for the lowest eigenvalue *and for higher eigenvalues* (Rayleigh-Ritz). Eigenvalues of perturbed operators.

Laplace and Poisson’s equations
Solution by separation of variables of Laplace’s equation in plane polar coordinates, and spherical polar coordinates (axisymmetric case); Legendre polynomials again.
Solution of Poisson’s equation as an integral. Uniqueness for Poisson’s equation with Dirichlet boundary conditions. Green’s identity. Green’s function for Laplace’s equation with simple boundary conditions using the method of images. Applications to electrostatic fields and steady heat flow.

Cartesian tensors
Transformation laws, addition, multiplication, contraction. Isotropic tensors, symmetric and anti-symmetric tensors. Principal axes and diagonalisation. Tensor fields, e.g. conductivity, polarizability, elasticity.

Contour integration
Integration along a path; elementary properties. Cauchy’s theorem; proof by Cauchy-Riemann equations and divergence theorem in 2–D. Integral of \(f'(z) \); Cauchy’s formula for \(f(z) \). Calculus of residues; examples of contour integration; point at infinity; multi-valued functions, branch points, \(\log \) \((z) \).

Transform methods
Fourier inversion by contour integration. Examples of simple linear differential equations, including diffusion equation.
Small oscillations
Small oscillations and equilibrium; normal modes, normal coordinates, examples, e.g. vibrations of linear molecules such as \(CO_2 \). Symmetries of normal modes.

Group theory
Idea of an algebra of symmetry operations; symmetry operations on a square. Definition of a group; group table. Subgroups; homomorphic and isomorphic groups.

Representation of groups; reducible and irreducible representations; basic theorems of representation theory. Classes, characters. Examples of character tables of point groups. *Applications in Molecular Physics*.
BIBLIOGRAPHY

There are very many books which cover the sort of mathematics required by Natural Scientists. The following should be helpful as general reference; further advice will be given by Lecturers. Books which can reasonably be used as principal texts for the course are marked with a dagger. The prices given are intended as a guide only, and are subject to change.

Natural Sciences Mathematics Part IA

† M L Boas
Wiley, 1983 (£37.95 hardback)
(3rd edition available August 2005, £34.95 hardback).

A Jeffrey
Mathematics for Engineers and Scientists, 5th edition.
Nelson Thornes, 1996 (£26.32 paperback)
(6th edition available, Blackwells, £29.99)

† E Kreyszig
Wiley, 1999 (£34.95 paperback, £83.50 hardback)
(9th edition available, £34.95 hardback).

† K F Riley, M P Hobson & S J Bence
Mathematical Methods for Physics and Engineering.
2nd ed., Cambridge University Press, 2002 (£33.00 paperback.) Available online at
http://search.lib.cam.ac.uk/?itemid=|eresources|31980 (2nd ed.),
and http://search.lib.cam.ac.uk/?itemid=|eresources|7643 (3rd ed.).

I S Sokolnikoff & R M Redheffer
McGraw Hill, 1967 (out of print)

† G Stephenson

G Stephenson
Worked Examples in Mathematics for Scientists and Engineers.
Longman, 1985 (out of print)

K A Stroud & D Booth
Palgrave, 2001 (£30.99 paperback with CD-ROM)

K A Stroud & D Booth
Advanced Engineering Mathematics.
Palgrave, 2003 (£32.99 paperback)

G Thomas, M Weir, J Hass & F Giordano
Pearson, 2004 (£45.99 hardback)
Natural Sciences Mathematics Part IB

† G Arfken & H Weber

† J W Dettman
Mathematical Methods in Physics and Engineering.
Dover, 1988 (£12.95 paperback).

† H F Jones
Groups, Representation and Physics, 2nd edition.

E Kreyszig
Wiley, 1999 (£34.95 paperback, £83.50 hardback)
(9th edition available, £34.95 hardback)

J Mathews & R L Walker
Mathematical Methods of Physics, 2nd edition.
Pearson/Benjamin Cummings, 1970 (£68.99 paperback)

† K F Riley, M P Hobson & S J Bence
Mathematical Methods for Physics and Engineering.
2nd ed., Cambridge University Press, 2002 (£33.00 paperback).

R N Snieder
Cambridge University Press, 2004 (£30.00 paperback)