
1C Vectors and Matrices

For z, a ∈ C define the principal value of log z and hence of za.

Let z = reiθ. Then log z = log r + iθ, where r is the modulus and θ is
the argument of z, with −π < θ 6 π.[2]

Write za = ea log z and use the principal value of log.[1]

Hence find all solutions to (i) zi = 1

Let z = reiθ. Then rie−θ = 1 and ri = ei log r so we need e−θ = 1 and
log r = 2nπ for some integer n. So z = e2πn.[2]

and (ii) zi + z i = 2i ,

Let z = reiθ. Then rie−θ + rieθ = 2i so ei log r(eθ + e−θ) = 2i. So
log r = π/2 + 2nπ and θ = 0. This gives z = eπ/2+2nπ[2]

and sketch the curve |zi+1| = 1.

|zi+1| = |ri+1e−θ+iθ| = |ei log r+log r−θ+iθ| = elog r−θ. Need log r − θ = 0
so r = eθ.[2]
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5C Vectors and Matrices

Explain why each of the equations

x = a + λb (1)

x× c = d (2)

describes a straight line, where a, b, c and d are constant vectors in R3, b and c are
non-zero, c · d = 0 and λ is a real parameter. Describe the geometrical relationship of a,
b, c and d to the relevant line, assuming that d 6= 0.

x = a + λb has (x − a) = λb so the point x lies in the direction of b
from a. So a is a point on the line and b is the direction of the line.



If x× c = d then x · d = x · (x× c) = 0 so x is orthogonal to d.
On the plane x · d = 0, |x||c| sin θ = |d| so |x| sin θ is a constant. This
is a line in the direction of c.

Then d is the vector orthogonal to the plane through the origin and the
line.[5]

Show that the solutions of (2) satisfy an equation of the form (1), defining a, b and
λ(x) in terms of c and d such that a · b = 0 and |b| = |c|. Deduce that the conditions on
c and d are sufficient for (2) to have solutions.

If x× c = d then let b = c and find an a on the line with a · b = 0.

Take (c×d)×c = d(c ·c)−c(c ·d) = d(c ·c) so a = (c×d)/(c ·c)
is on the line and has a · b = 0. Now λ(x) = (x− a) · b/(b · b)[4]

So there is a solution.[1]

For each of the lines described by (1) and (2), find the point x that is closest to a
given fixed point y.

For a line of the form x = a + λb, find the value of λ that gives
(y−x)·b = 0. This has y ·b−a·b−λb·b = 0 so λ = (y ·b−a·b)/b·b.

For a line of the form x × c = d, use the previous result. Take
a = (c× d)/(c · c) and b = c in

x = a +
(y · b− a · b)

b · b
b =

c× d

c · c
+

y · c
c · c

c
[5]

Find the line of intersection of the two planes x ·m = µ and x ·n = ν, where m and
n are constant unit vectors, m× n 6= 0 and µ and ν are constants. Express your answer
in each of the forms (1) and (2), giving both a and d as linear combinations of m and n.

Suppose a = αm+βn. Then for a to be on the line, we need a ·m = µ
and x · n = ν so(

1 m · n
m · n 1

)(
α
β

)
=

(
µ
ν

)
so

(
α
β

)
=

1

1− (m · n)2

(
1 −m · n

−m · n 1

)(
µ
ν

)
[2]

Then the direction of the line is orthogonal to both m and n so
take b = m× n[1]

For lines of the form x × c = d, take c = m × n. Then
d = x× (m× n) = m(x · n)− n(x ·m) = νm− µn[2]
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(a) Let M be a real symmetric n×n matrix. Prove the following.

(i) Each eigenvalue of M is real.

Suppose Mx = λx. Then x†M † = x†λ∗ so (x†M †)x = x†λ∗x and
x†M †x = x†Mx = x†λx, so λ∗ = λ and so λ is real.

(ii) Each eigenvector can be chosen to be real.

Suppose Mx = λx. Then Mx∗ = λx∗ so choose the eigenvectors x+x∗

and i(x− x∗).

(iii) Eigenvectors with different eigenvalues are orthogonal.

Suppose Mx = λ1x and My = λ2y. Then (y†M †)x = λ2y
†x but

also (y†M †)x = y†Mx = λ1y
†x. If λ1 6= λ2 then y†x = 0 so the

eigenvectors are orthogonal.[10]

(b) Let A be a real antisymmetric n×n matrix. Prove that each eigenvalue of A2 is
real and is less than or equal to zero.

Suppose A2x = λx. Then x†A2x = λx†x = λ|x|2 but also x†A2x =
−x†A†Ax = −|Ax|2, and so λ is real and negative.[4]

If −λ2 and −µ2 are distinct, non-zero eigenvalues of A2, show that there exist
orthonormal vectors u, u′, w, w′ with

Au = λu′ , Aw = µw′ ,

Au′ = −λu , Aw′ = −µw .

Let x and y be unit eigenvectors of A2 corresponding to −λ2 and −µ2
respectively. Then let u = x, w = y, u′ = (Ax)/λ and w′ = (Ay)/µ.
Since A2x = −λ2x, we must have Au′ = −λu and similarly for w′.
So we just need to check that the vectors u, u′, w, w′ are orthogonal
and that the vectors u′ and w′ are unit vectors. First note that
A2 is real and symmetric as (A2)T = ATAT = (−A)(−A) = A2,
so the eigenvectors of A2 corresponding to different eigenvalues are

orthogonal. Now note that uTAu = −(uTAT )u =
(
−(uTAT )u

)T
=

−uT (Au) so uTAu = 0. Finally, check that u′ is a unit vector with
(uTAT /λ)(Au/λ) = −uTA2u/λ2 = uTu.As u is a unit vector, so is u′

(and similarly for w′).[6]
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