1C Vectors and Matrices

For $z, a \in \mathbb{C}$ define the *principal value* of $\log z$ and hence of z^a .

[2] Let $z = re^{i\theta}$. Then $\log z = \log r + i\theta$, where r is the modulus and θ is the argument of z, with $-\pi < \theta \leq \pi$.

[1] Write
$$z^a = e^{a \log z}$$
 and use the principal value of log.

Hence find all solutions to (i) $z^{i} = 1$

[2] Let $z = re^{i\theta}$. Then $r^i e^{-\theta} = 1$ and $r^i = e^{i\log r}$ so we need $e^{-\theta} = 1$ and $\log r = 2n\pi$ for some integer n. So $z = e^{2\pi n}$.

and (ii) $z^{i} + \overline{z}^{i} = 2i$,

[2] Let
$$z = re^{i\theta}$$
. Then $r^i e^{-\theta} + r^i e^{\theta} = 2i$ so $e^{i\log r}(e^{\theta} + e^{-\theta}) = 2i$. So $\log r = \pi/2 + 2n\pi$ and $\theta = 0$. This gives $z = e^{\pi/2 + 2n\pi}$

and sketch the curve $|z^{i+1}| = 1$.

$$|z^{i+1}| = |r^{i+1}e^{-\theta + i\theta}| = |e^{i\log r + \log r - \theta + i\theta}| = e^{\log r - \theta}. \text{ Need } \log r - \theta = 0$$

so $r = e^{\theta}.$

5C Vectors and Matrices

Explain why each of the equations

$$\mathbf{x} = \mathbf{a} + \lambda \mathbf{b} \tag{1}$$

$$\mathbf{x} \times \mathbf{c} = \mathbf{d} \tag{2}$$

describes a straight line, where **a**, **b**, **c** and **d** are constant vectors in \mathbb{R}^3 , **b** and **c** are non-zero, $\mathbf{c} \cdot \mathbf{d} = 0$ and λ is a real parameter. Describe the geometrical relationship of **a**, **b**, **c** and **d** to the relevant line, assuming that $\mathbf{d} \neq \mathbf{0}$.

 $\mathbf{x} = \mathbf{a} + \lambda \mathbf{b}$ has $(\mathbf{x} - \mathbf{a}) = \lambda \mathbf{b}$ so the point \mathbf{x} lies in the direction of \mathbf{b} from \mathbf{a} . So \mathbf{a} is a point on the line and \mathbf{b} is the direction of the line.

If $\mathbf{x} \times \mathbf{c} = \mathbf{d}$ then $\mathbf{x} \cdot \mathbf{d} = \mathbf{x} \cdot (\mathbf{x} \times \mathbf{c}) = 0$ so \mathbf{x} is orthogonal to \mathbf{d} . On the plane $\mathbf{x} \cdot \mathbf{d} = 0$, $|\mathbf{x}| |\mathbf{c}| \sin \theta = |\mathbf{d}|$ so $|\mathbf{x}| \sin \theta$ is a constant. This is a line in the direction of \mathbf{c} .

Then \mathbf{d} is the vector orthogonal to the plane through the origin and the line.

Show that the solutions of (2) satisfy an equation of the form (1), defining **a**, **b** and $\lambda(\mathbf{x})$ in terms of **c** and **d** such that $\mathbf{a} \cdot \mathbf{b} = 0$ and $|\mathbf{b}| = |\mathbf{c}|$. Deduce that the conditions on **c** and **d** are sufficient for (2) to have solutions.

[4] If
$$\mathbf{x} \times \mathbf{c} = \mathbf{d}$$
 then let $\mathbf{b} = \mathbf{c}$ and find an \mathbf{a} on the line with $\mathbf{a} \cdot \mathbf{b} = 0$.
Take $(\mathbf{c} \times \mathbf{d}) \times \mathbf{c} = \mathbf{d}(\mathbf{c} \cdot \mathbf{c}) - \mathbf{c}(\mathbf{c} \cdot \mathbf{d}) = \mathbf{d}(\mathbf{c} \cdot \mathbf{c})$ so $\mathbf{a} = (\mathbf{c} \times \mathbf{d})/(\mathbf{c} \cdot \mathbf{c})$
is on the line and has $\mathbf{a} \cdot \mathbf{b} = 0$. Now $\lambda(\mathbf{x}) = (\mathbf{x} - \mathbf{a}) \cdot \mathbf{b}/(\mathbf{b} \cdot \mathbf{b})$
So there is a solution.

For each of the lines described by (1) and (2), find the point \mathbf{x} that is closest to a given fixed point \mathbf{y} .

For a line of the form $\mathbf{x} = \mathbf{a} + \lambda \mathbf{b}$, find the value of λ that gives $(\mathbf{y} - \mathbf{x}) \cdot \mathbf{b} = 0$. This has $\mathbf{y} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{b} - \lambda \mathbf{b} \cdot \mathbf{b} = 0$ so $\lambda = (\mathbf{y} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{b})/\mathbf{b} \cdot \mathbf{b}$.

For a line of the form $\mathbf{x} \times \mathbf{c} = \mathbf{d}$, use the previous result. Take $\mathbf{a} = (\mathbf{c} \times \mathbf{d})/(\mathbf{c} \cdot \mathbf{c})$ and $\mathbf{b} = \mathbf{c}$ in

$$\mathbf{x} = \mathbf{a} + \frac{(\mathbf{y} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{b})}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} = \frac{\mathbf{c} \times \mathbf{d}}{\mathbf{c} \cdot \mathbf{c}} + \frac{\mathbf{y} \cdot \mathbf{c}}{\mathbf{c} \cdot \mathbf{c}} \mathbf{c}$$

Find the line of intersection of the two planes $\mathbf{x} \cdot \mathbf{m} = \mu$ and $\mathbf{x} \cdot \mathbf{n} = \nu$, where \mathbf{m} and \mathbf{n} are constant unit vectors, $\mathbf{m} \times \mathbf{n} \neq \mathbf{0}$ and μ and ν are constants. Express your answer in each of the forms (1) and (2), giving both \mathbf{a} and \mathbf{d} as linear combinations of \mathbf{m} and \mathbf{n} .

Suppose $\mathbf{a} = \alpha \mathbf{m} + \beta \mathbf{n}$. Then for \mathbf{a} to be on the line, we need $\mathbf{a} \cdot \mathbf{m} = \mu$ and $\mathbf{x} \cdot \mathbf{n} = \nu$ so

[2]
$$\begin{pmatrix} 1 & \mathbf{m} \cdot \mathbf{n} \\ \mathbf{m} \cdot \mathbf{n} & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \mu \\ \nu \end{pmatrix} \quad so \quad \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{1}{1 - (\mathbf{m} \cdot \mathbf{n})^2} \begin{pmatrix} 1 & -\mathbf{m} \cdot \mathbf{n} \\ -\mathbf{m} \cdot \mathbf{n} & 1 \end{pmatrix} \begin{pmatrix} \mu \\ \nu \end{pmatrix}$$

Then the direction of the line is orthogonal to both \mathbf{m} and \mathbf{n} so take $\mathbf{b} = \mathbf{m} \times \mathbf{n}$

[2] For lines of the form
$$\mathbf{x} \times \mathbf{c} = \mathbf{d}$$
, take $\mathbf{c} = \mathbf{m} \times \mathbf{n}$. Then
 $\mathbf{d} = \mathbf{x} \times (\mathbf{m} \times \mathbf{n}) = \mathbf{m}(\mathbf{x} \cdot \mathbf{n}) - \mathbf{n}(\mathbf{x} \cdot \mathbf{m}) = \nu \mathbf{m} - \mu \mathbf{n}$

[20]

[1]

[5]

[5]

8B Vectors and Matrices

(a) Let M be a real symmetric $n \times n$ matrix. Prove the following.

(i) Each eigenvalue of M is real.

Suppose $M\mathbf{x} = \lambda \mathbf{x}$. Then $\mathbf{x}^{\dagger}M^{\dagger} = \mathbf{x}^{\dagger}\lambda^{*}$ so $(\mathbf{x}^{\dagger}M^{\dagger})\mathbf{x} = \mathbf{x}^{\dagger}\lambda^{*}\mathbf{x}$ and $\mathbf{x}^{\dagger}M^{\dagger}\mathbf{x} = \mathbf{x}^{\dagger}M\mathbf{x} = \mathbf{x}^{\dagger}\lambda\mathbf{x}$, so $\lambda^{*} = \lambda$ and so λ is real.

(ii) Each eigenvector can be chosen to be real.

Suppose $M\mathbf{x} = \lambda \mathbf{x}$. Then $M\mathbf{x}^* = \lambda \mathbf{x}^*$ so choose the eigenvectors $\mathbf{x} + \mathbf{x}^*$ and $i(\mathbf{x} - \mathbf{x}^*)$.

(iii) Eigenvectors with different eigenvalues are orthogonal.

Suppose $M\mathbf{x} = \lambda_1 \mathbf{x}$ and $M\mathbf{y} = \lambda_2 \mathbf{y}$. Then $(\mathbf{y}^{\dagger} M^{\dagger})\mathbf{x} = \lambda_2 \mathbf{y}^{\dagger}\mathbf{x}$ but also $(\mathbf{y}^{\dagger} M^{\dagger})\mathbf{x} = \mathbf{y}^{\dagger} M\mathbf{x} = \lambda_1 \mathbf{y}^{\dagger}\mathbf{x}$. If $\lambda_1 \neq \lambda_2$ then $\mathbf{y}^{\dagger}\mathbf{x} = 0$ so the eigenvectors are orthogonal.

(b) Let A be a real antisymmetric $n \times n$ matrix. Prove that each eigenvalue of A^2 is real and is less than or equal to zero.

[4] Suppose
$$A^2 \mathbf{x} = \lambda \mathbf{x}$$
. Then $\mathbf{x}^{\dagger} A^2 \mathbf{x} = \lambda \mathbf{x}^{\dagger} \mathbf{x} = \lambda |\mathbf{x}|^2$ but also $\mathbf{x}^{\dagger} A^2 \mathbf{x} = -\mathbf{x}^{\dagger} A^{\dagger} A \mathbf{x} = -|A\mathbf{x}|^2$, and so λ is real and negative.

If $-\lambda^2$ and $-\mu^2$ are distinct, non-zero eigenvalues of A^2 , show that there exist orthonormal vectors $\mathbf{u}, \mathbf{u}', \mathbf{w}, \mathbf{w}'$ with

$$A\mathbf{u} = \lambda \mathbf{u}', \qquad A\mathbf{w} = \mu \mathbf{w}',$$
$$A\mathbf{u}' = -\lambda \mathbf{u}, \qquad A\mathbf{w}' = -\mu \mathbf{w}.$$

Let \mathbf{x} and \mathbf{y} be unit eigenvectors of A^2 corresponding to $-\lambda^2$ and $-\mu^2$ respectively. Then let $\mathbf{u} = \mathbf{x}$, $\mathbf{w} = \mathbf{y}$, $\mathbf{u}' = (A\mathbf{x})/\lambda$ and $\mathbf{w}' = (A\mathbf{y})/\mu$. Since $A^2\mathbf{x} = -\lambda^2\mathbf{x}$, we must have $A\mathbf{u}' = -\lambda\mathbf{u}$ and similarly for \mathbf{w}' . So we just need to check that the vectors \mathbf{u} , \mathbf{u}' , \mathbf{w} , \mathbf{w}' are orthogonal and that the vectors \mathbf{u}' and \mathbf{w}' are unit vectors. First note that A^2 is real and symmetric as $(A^2)^T = A^T A^T = (-A)(-A) = A^2$, so the eigenvectors of A^2 corresponding to different eigenvalues are orthogonal. Now note that $\mathbf{u}^T A \mathbf{u} = -(\mathbf{u}^T A^T) \mathbf{u} = (-(\mathbf{u}^T A^T) \mathbf{u})^T =$ $-\mathbf{u}^T (A\mathbf{u})$ so $\mathbf{u}^T A \mathbf{u} = 0$. Finally, check that \mathbf{u}' is a unit vector with $(\mathbf{u}^T A^T/\lambda)(A\mathbf{u}/\lambda) = -\mathbf{u}^T A^2 \mathbf{u}/\lambda^2 = \mathbf{u}^T \mathbf{u}.As \mathbf{u}$ is a unit vector, so is \mathbf{u}' (and similarly for \mathbf{w}').

[6] [**20**]

[10]