
2E Numbers and Sets

What is an equivalence relation on a set X? If ∼ is an equivalence relation on X,
what is an equivalence class of ∼? Prove that the equivalence classes of ∼ form a partition
of X.

A relation R on a set X is a subset of X × X. We write xRy for
(x, y) ∈ R. Say R is an equivalence relation if it is reflexive (xRx for
all x), symmetric (xRy iff yRx) and transitive (if xRy and yRz then
xRz).

An equivalence class of ∼ is a subset of X of the form [x] = {y ∈
X : y ∼ x} for some x ∈ X.

Claim: The equivalence classes of ∼ partition X.

Proof: By reflexivity they cover X (x ∈ [x] for all x ∈ X). For x1 and
x2 in X we need to show that [x1] and [x2] are disjoint or equal, so
suppose there exists x ∈ [x1] ∩ [x2]. Then x ∼ x1 and x ∼ x2 so for all
y ∈ [x1] we have (using symmetry)

y ∼ x1 ∼ x ∼ x2.

Transitivity gives y ∼ x2 so y ∈ [x2] and hence [x1] ⊂ [x2]. Similarly
[x2] ⊂ [x1] so [x1] = [x2], and we’re done. �[5]

Let ∼ be the relation on the positive integers defined by x ∼ y if either x divides y
or y divides x. Is ∼ an equivalence relation? Justify your answer.

No. We have 2 ∼ 1 and 1 ∼ 3 but 2 ≁ 3, so ∼ is not transitive.[2]

Write down an equivalence relation on the positive integers that has exactly four
equivalence classes, of which two are infinite and two are finite.

Consider the partition

{1, 2, 3, . . . } = {1} ∪ {2} ∪ {3, 5, 7, . . . } ∪ {4, 6, 8, . . . }.

Define x ∼ y iff x and y lie in the same part of the partition. The
equivalence classes are exactly the parts of the partition.[3]
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(a) What is the highest common factor of two positive integers a and b? Show that
the highest common factor may always be expressed in the form λa+ µb, where λ and µ

are integers.

(a) The hcf of a and b is a positive integer c such that c | a and c | b
and such that if d | a and d | b then d | c (clearly unique if it exists).

Let S be the set of positive integers of the form λa+µb for λ, µ ∈ Z
and let s be its smallest element.

Claim: hcf(a, b) = s.

Proof: Clearly if d | a and d | b then d divides every element of S, so
d | s. Left to show s divides a and b. By division algorithm we have
a = qs+ r for some q ∈ Z, r ∈ {0, 1, . . . , s− 1}. Then

r = (1− qλ)a− qµb

is of the form λ′a+µ′b so by minimality of s it must be 0. Hence a = qs

is divisible by s. Similarly s | b. �[5]

Which positive integers n have the property that, for any positive integers a and b,
if n divides ab then n divides a or n divides b? Justify your answer.

Precisely the primes (and 1). Suppose n composite, say n = ab for
some a and b greater than 1. Then n | ab but n ∤ a and n ∤ b.
Conversely suppose n is prime, n | ab but n ∤ a. Then n and a have
no common factor other than 1, so hcf(n, a) = 1. By previous part we
have λn+ µa = 1 for some λ, µ ∈ Z. Then

b = λnb+ µab

and n divides the RHS, so n | b.[5]

Let a, b, c, d be distinct prime numbers. Explain carefully why ab cannot equal cd.

[No form of the Fundamental Theorem of Arithmetic may be assumed without proof.]

Suppose for contradiction that ab = cd. Then a | cd, so by previous
part, since a is prime, we get a | c or a | d. Since c and d are prime, we
deduce a = c or a = d, contradicting the fact that a, b, c, d are distinct.[3]

(b) Now let S be the set of positive integers that are congruent to 1 mod 10. We
say that x ∈ S is irreducible if x > 1 and whenever a, b ∈ S satisfy ab = x then a = 1 or
b = 1. Do there exist distinct irreducibles a, b, c, d with ab = cd?

Yes. Let a = 3 × 7, b = 13 × 17, c = 3 × 17 and d = 13 × 7. Each of
these is 1 mod 10, and has only one non-trivial factorisation in positive
integers, but the factors are not 1 mod 10, so they are each irreducible in
S. They are clearly distinct (say by previous part) and satisfy ab = cd.[7]
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Define the binomial coefficient

(

n

i

)

, where n is a positive integer and i is an integer

with 0 6 i 6 n. Arguing from your definition, show that

n
∑

i=0

(

n

i

)

= 2n.

(

n

i

)

is defined to be the number of subsets of {1, 2, . . . , n} of size i. Thus

n
∑

i=0

(

n

i

)

= Total number of subsets of {1, 2, . . . , n},

and this is 2n (each of the n elements is either in or not in any given
subset).[3]

Prove the binomial theorem, that (1 + x)n =

n
∑

i=0

(

n

i

)

xi for any real number x.

Imagine multiplying out the n copies of (1 + x). All terms are of the
form xi for 0 6 i 6 n, and each xi comes from multiplying the x’s from
i of the brackets with the 1’s from the remaining n − i brackets. The
number of copies of xi is therefore the number of ways of choosing the
i brackets from which to take the x, which is exactly

(

n

i

)

.[2]

By differentiating this expression, or otherwise, evaluate

n
∑

i=0

i

(

n

i

)

and

n
∑

i=0

i2
(

n

i

)

.

Differentiating the binomial theorem with respect to x gives

n(1 + x)n−1 =

n
∑

i=0

i

(

n

i

)

xi−1

for all real x. Differentiating again gives

n(n− 1)(1 + x)n−2 =

n
∑

i=0

i(i− 1)

(

n

i

)

xi−2

for all x. Setting x = 1 we obtain

n
∑

i=0

i

(

n

i

)

= n2n−1

and
n
∑

i=0

i(i− 1)

(

n

i

)

= n(n− 1)2n−2.

Adding these gives

n
∑

i=0

i2
(

n

i

)

= n2n−2
(

(n− 1) + 2
)

= n(n+ 1)2n−2.
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By considering the identity (1 + x)n(1 + x)n = (1 + x)2n, or otherwise, show that

n
∑

i=0

(

n

i

)2

=

(

2n

n

)

.

We have
(

2n

n

)

= Coeff of xn in (1 + x)2n

= Coeff of xn in (1 + x)n(1 + x)n

=

n
∑

i=0

(

Coeff of xi in (1 + x)n
)(

Coeff of xn−i in (1 + x)n
)

=
n
∑

i=0

(

n

i

)(

n

n− i

)

.

Sending a subset of {1, 2, . . . , n} to its complement gives a bijection
between subsets of size i and subsets of size n − i so

(

n

n−i

)

=
(

n

i

)

and
we get the result.[3]

Show that

n
∑

i=0

i

(

n

i

)

2

=
n

2

(

2n

n

)

.

Differentiating (1 + x)n(1 + x)n = (1 + x)2n we get

2n(1 + x)2n−1 = 2(1 + x)n
d

dx
(1 + x)n

= 2

(

n
∑

j=0

(

n

j

)

xj

)(

n
∑

i=0

i

(

n

i

)

xi−1

)

.

Equating coeffs of xn−1 we get

2n

(

2n− 1

n− 1

)

= 2

n
∑

i=0

i

(

n

i

)(

n

n− i

)

= 2

n
∑

i=0

i

(

n

i

)

2

.

So left to show

2

(

2n− 1

n− 1

)

=

(

2n

n

)

,

or equivalently that
(

2n − 1

n− 1

)

+

(

2n− 1

n

)

=

(

2n

n

)

.

To prove this equality note that the RHS counts subsets of {1, 2, . . . , 2n}
of size n whilst the LHS counts the same thing, split into ‘subsets
containing 2n’ and ‘subsets not containing 2n’.[6]
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