2D Groups

State and prove Lagrange's Theorem.

Lagrange's Theorem: If G is a finite group and H a subgroup then |H| divides |G|.

<u>Proof:</u> Define a relation \sim on G by $g_1 \sim g_2$ iff $g_1^{-1}g_2 \in H$. This is reflexive (since H contains the identity), symmetric (since $g_2^{-1}g_1 = (g_1^{-1}g_2)^{-1}$ and H is closed under inverses) and transitive (as $g_1^{-1}g_3 = (g_1^{-1}g_2)(g_2^{-1}g_3)$ and H is closed under products). Hence it is an equivalence relation, and G is partitioned into equivalence classes.

We now claim that for each $g \in G$ its equivalence class [g] has size |H|, so that

 $|G| = |H| \times \#$ equivalence classes

is divisible by |H|. Well, define a map $f: [g] \to H$ by $x \mapsto g^{-1}x$.

f well-defined: If $x \in [g]$ then $g^{-1}x \in H$ so $f(x) \in H$.

 $\frac{f \text{ bijective: }}{H \to [g]).}$ Its inverse is $x \mapsto gx$ (this is similarly well-defined

[6]

Thus
$$|[g]| = |H|$$
 and we're done

Show that the dihedral group of order 2n has a subgroup of order k for every k dividing 2n.

The dihedral group D_{2n} is the symmetry group of a regular n-gon in the plane. If m > 1 divides n then one can form a regular m-gon with vertices every (n/m)th vertex of the n-gon. The symmetry group of this m-gon (of order 2m) and its rotational subgroup (of order m) form subgroups of the symmetry group of the n-gon. So we have found subgroups of D_{2n} of order m and 2m for every m > 1 dividing n, and hence of order k for every $k \mid 2n$ (for k = 1 just take the subgroup $\{e\}$, and for k = 2 the subgroup generated by a reflection).

[10]

[4]

5D Groups

(a) Let G be a finite group, and let $g \in G$. Define the *order* of g and show it is finite. Show that if g is conjugate to h, then g and h have the same order.

The <u>order</u> o(g) of g is the smallest positive integer n such that $g^n = e$. <u>Claim:</u> The order exists (is finite). <u>Proof:</u> We need to show that the set $\{n > 0 : g^n = e\}$ is non-empty. Let |G| = N and consider the N + 1 elements of G given by e, g, g^2, \ldots, g^N . By the pigeonhole principle, there exist distinct $i, j \in \{0, 1, ..., N+1\}$ with $g^i = g^j$. WLOG i < j. Then $g^{j-i} = e$ so $j - i \in \{n > 0 : g^n = e\}$ and we're done.

$$g^n = e \iff kh^n k^{-1} = e \iff h^n (=k^{-1}k) = e.$$

Thus $\{n \in \mathbb{Z} : g^n = e\} = \{n \in \mathbb{Z} : h^n = e\}$ so o(g) = o(h).

(b) Show that every $g \in S_n$ can be written as a product of disjoint cycles. For $g \in S_n$, describe the order of g in terms of the cycle decomposition of g.

Take any $g \in S_n$; this represents a permutation of $\{1, 2, ..., n\}$. For $m \in \{1, 2, ..., n\}$ let i(m) be the smallest positive integer with $g^{i(m)}(m) = m$ (this exists since $g^{o(g)}(m) = m$).

Then $m, g(m), \ldots, g^{i(m)-1}(m)$ are distinct: if $g^j(m) = g^k(m)$ with $0 \leq j < k < i(m)$ then $g^{k-j}(m) = m$, contradicting minimality of i(m). Moreover they are cycled by the action of g. In particular they are closed under the action of the subgroup of S_n generated by g, so form the orbit of m under this subgroup.

Thus g acts on the orbit of each element m as a cycle. Since distinct orbits are disjoint, we obtain a disjoint cycle decomposition of g.

The order of g is the lcm of the lengths of the cycles in its disjoint cycle representation.

(c) Define the alternating group A_n . What is the condition on the cycle decomposition of $g \in S_n$ that characterises when $g \in A_n$?

Every $g \in S_n$ can be written as a product of transpositions, and the number of transpositions is well-defined mod 2. Say g is <u>even</u> (resp <u>odd</u>) if this number is even (odd). $A_n = \{g \in S_n : g \text{ is even}\}.$

Since a cycle of length k is a product of k - 1 transpositions, g lies in A_n iff the number of cycles in its cycle decomp of even length is even.

(d) Show that, for every n, A_{n+2} has a subgroup isomorphic to S_n .

Let τ be the permutation of $\{1, 2, \ldots, n+2\}$ transposing n+1 and n+2. View perms of $\{1, 2, \ldots, n\}$ as perms of $\{1, 2, \ldots, n+2\}$ in the obvious way. Let $N: S_{n+2} \to \mathbb{Z}/2$ be the homomorphism sending a perm to the mod 2 number of factors in its decomp into transpositions.

Define a map $\theta: S_n \to S_{n+2}$ by

$$\theta(\pi) = \pi \tau^{N(\pi)}$$

We claim θ is an injective homomorphism with image contained in A_{n+2} , so it defines an isomorphism between S_n and a subgroup of A_{n+2} .

[5]

 $\left[5\right]$

[3]

 $\begin{array}{c} \underline{\theta \ is \ a \ hom:} \ Perms \ of \{1, 2, \dots, n\} \ commute \ with \ \tau, \ so \ for \ \pi_1, \ \pi_2 \in S_n \ we \ have \\ \\ \theta(\pi_1\pi_2) = \pi_1\pi_2\tau^{N(\pi_1\pi_2)} = \pi_1\tau^{N(\pi_1)}\pi_2\tau^{N(\pi_2)} = \theta(\pi_1)\theta(\pi_2). \\ \\ \underline{\theta(\pi_1\pi_2)} = \pi_1\pi_2\tau^{N(\pi_1\pi_2)} = \pi_1\tau^{N(\pi_1)}\pi_2\tau^{N(\pi_2)} = \theta(\pi_1)\theta(\pi_2). \\ \\ \underline{\theta(\pi_1, \pi_2)} = \pi_1\pi_2\tau^{N(\pi_1\pi_2)} = \pi_1\tau^{N(\pi_1)}\pi_2\tau^{N(\pi_2)} = \theta(\pi_1)\theta(\pi_2). \\ \\ \underbrace{\theta(\pi_1, \pi_2)}_{\{1, 2, \dots, n+2\}} \ to \ \{1, 2, \dots, n\}. \\ \\ \underline{\theta(S_n) \subset A_{n+2}:} \ For \ \pi \in S_n \ we \ have \\ \\ N(\theta(\pi)) = N(\pi) + N(\tau^{N(\pi)}) = 2N(\pi) = 0 \mod 2. \\ \\ \hline Hence \ \theta(S_n) \ is \ a \ subgroup \ of \ A_{n+2} \ isomorphic \ to \ S_n. \end{array}$

7D Groups

(a) State the orbit–stabilizer theorem.

(a) <u>Orbit-Stabiliser</u>: If a finite group G acts on a set X then for all $x \in X$ we have

$$G| = |G \cdot x||G_x|,$$

where $G \cdot x$ is the orbit of x and G_x the stabiliser.

Let a group G act on itself by conjugation. Define the centre Z(G) of G, and show that Z(G) consists of the orbits of size 1. Show that Z(G) is a normal subgroup of G.

 $Z(G) = \{g \in G : gh = hg \text{ for all } h \in G\}$. Thus $g \in G$ lies in the centre iff $hgh^{-1} = g$ for all $h \in G$, i.e. iff g is fixed by the conjugation action, so iff the orbit of g has size 1.

Z(G) is a subgroup: Clearly $e \in Z(G)$. If $g_1, g_2 \in Z(G)$ then for all $h \in G$ we have

$$(g_1g_2)h = g_1hg_2 = h(g_1g_2)$$

using associativity, so $g_1g_2 \in Z(G)$. Finally, for all $g \in Z(G)$ and $h \in G$ we have

$$g^{-1}h = g^{-1}hgg^{-1} = g^{-1}ghg^{-1} = hg^{-1},$$

so $g^{-1} \in Z(G)$.

<u>Z(G)</u> normal: For $g \in Z(G)$ and $h \in G$ we have $hgh^{-1} = g \in Z(G)$, so $hZ(G)h^{-1} \subset Z(G)$ for all h. Hence Z(G) is normal in G.

(b) Now let $|G| = p^n$, where p is a prime and $n \ge 1$. Show that if G acts on a set X, and Y is an orbit of this action, then either |Y| = 1 or p divides |Y|.

[5]

[1]

(b) Let y be an element of Y. Then orbit-stabiliser gives

 $p^n = |Y||G_y|,$

so |Y| divides p^n . Hence |Y| is 1 or divisible by p.

Show that |Z(G)| > 1.

Let G act on itself by conjugation. Then, considering the partition of G into orbits, we get

$$Z(G)| = \# orbits \ of \ size \ 1$$
$$= |G| - \sum_{\substack{orbits \ Y \\ with \ |Y| > 1}} |Y|$$

and each term on the RHS is divisible by p. So $p \mid |Z(G)|$. Since $|Z(G)| \ge 1$ (Z(G) contains e) we have $|Z(G)| \ge p > 1$.

By considering the set of elements of G that commute with a fixed element x not in Z(G), show that Z(G) cannot have order p^{n-1} .

Suppose $Z(G) \neq G$, and pick $x \in G \setminus Z(G)$. Then $G_x = \{g \in G : gx = xg\}$ is a subgroup of G, and is proper since $x \notin Z(G)$. Moreover $Z(G) \leqslant G_x$ and is proper since $x \in G_x \setminus Z(G)$. We thus have a chain of subgroups

$$Z(G) \lneq G_x \lneq G,$$

and by Lagrange's theorem

$$|Z(G)| \leqslant \frac{|G_x|}{p} \leqslant \frac{|G|}{p^2} = p^{n-2}.$$

[7] So |Z(G)| cannot be p^{n-1} .

[20]

[5]

[2]