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SECTION I

1F Linear Algebra
What is an eigenvalue of a matrix A? What is the eigenspace corresponding to an

eigenvalue λ of A?

Consider the matrix

A =




aa ab ac ad
ba bb bc bd
ca cb cc cd
da db dc dd




for (a, b, c, d) ∈ R4 a non-zero vector. Show that A has rank 1. Find the eigenvalues of A
and describe the corresponding eigenspaces. Is A diagonalisable?

2G Groups, Rings and Modules
Let G be a group and P a subgroup.

(a) Define the normaliser NG(P ).

(b) Suppose that K ⊳G and P is a Sylow p-subgroup of K. Using Sylow’s second
theorem, prove that G = NG(P )K.

3E Analysis II
Let A ⊂ R. What does it mean to say that a sequence of real-valued functions on

A is uniformly convergent?

(i) If a sequence (fn) of real-valued functions on A converges uniformly to f , and each
fn is continuous, must f also be continuous?

(ii) Let fn(x) = e−nx. Does the sequence (fn) converge uniformly on [0, 1]?

(iii) If a sequence (fn) of real-valued functions on [−1, 1] converges uniformly to f , and
each fn is differentiable, must f also be differentiable?

Give a proof or counterexample in each case.

4F Complex Analysis
State the Cauchy Integral Formula for a disc. If f : D(z0; r) → C is a holomorphic

function such that |f(z)| 6 |f(z0)| for all z ∈ D(z0; r), show using the Cauchy Integral
Formula that f is constant.
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5D Methods
Let

gǫ(x) =
−2ǫx

π(ǫ2 + x2)2
.

By considering the integral
∫∞
−∞ φ(x) gǫ(x) dx, where φ is a smooth, bounded function that

vanishes sufficiently rapidly as |x| → ∞, identify limǫ→0 gǫ(x) in terms of a generalized
function.

6B Quantum Mechanics
(a) Define the probability density ρ and probability current j for the wavefunction

Ψ(x, t) of a particle of mass m. Show that

∂ρ

∂t
+

∂j

∂x
= 0 ,

and deduce that j = 0 for a normalizable, stationary state wavefunction. Give an example
of a non-normalizable, stationary state wavefunction for which j is non-zero, and calculate
the value of j.

(b) A particle has the instantaneous, normalized wavefunction

Ψ(x, 0) =

(
2α

π

)1/4

e−αx2+ikx ,

where α is positive and k is real. Calculate the expectation value of the momentum for
this wavefunction.

7A Electromagnetism
Write down Maxwell’s Equations for electric and magnetic fields E(x, t) and B(x, t)

in the absence of charges and currents. Show that there are solutions of the form

E(x, t) = Re{E0 e
i(k·x−ωt) } , B(x, t) = Re{B0 e

i(k·x−ωt) }

if E0 and k satisfy a constraint and if B0 and ω are then chosen appropriately.

Find the solution with E0 = E(1, i, 0), where E is real, and k = k(0, 0, 1). Compute
the Poynting vector and state its physical significance.
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8C Numerical Analysis
Calculate the LU factorization of the matrix

A =




3 2 −3 −3
6 3 −7 −8
3 1 −6 −4

−6 −3 9 6


 .

Use this to evaluate det(A) and to solve the equation

Ax = b

with

b =




3
3

−1
−3


 .

9H Markov Chains
For a Markov chain X on a state space S with u, v ∈ S, we let puv(n) for

n ∈ {0, 1, . . .} be the probability that Xn = v when X0 = u.

(a) Let X be a Markov chain. Prove that if X is recurrent at a state v, then∑∞
n=0 pvv(n) = ∞. [You may use without proof that the number of returns of a Markov

chain to a state v when starting from v has the geometric distribution.]

(b) LetX and Y be independent simple symmetric random walks on Z2 starting from
the origin 0. Let Z =

∑∞
n=0 1{Xn=Yn}. Prove that E[Z] =

∑∞
n=0 p00(2n) and deduce that

E[Z] = ∞. [You may use without proof that pxy(n) = pyx(n) for all x, y ∈ Z2 and n ∈ N,
and thatX is recurrent at 0.]
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SECTION II

10F Linear Algebra
If U is a finite-dimensional real vector space with inner product 〈·, ·〉, prove that the

linear map φ : U → U∗ given by φ(u)(u′) = 〈u, u′〉 is an isomorphism. [You do not need
to show that it is linear.]

If V and W are inner product spaces and α : V → W is a linear map, what is meant
by the adjoint α∗ of α? If {e1, e2, . . . , en} is an orthonormal basis for V , {f1, f2, . . . , fm}
is an orthonormal basis for W , and A is the matrix representing α in these bases, derive
a formula for the matrix representing α∗ in these bases.

Prove that Im(α) = Ker(α∗)⊥.

If w0 6∈ Im(α) then the linear equation α(v) = w0 has no solution, but we may
instead search for a v0 ∈ V minimising ||α(v) − w0||2, known as a least-squares solution.
Show that v0 is such a least-squares solution if and only if it satisfies α∗α(v0) = α∗(w0).
Hence find a least-squares solution to the linear equation



1 0
1 1
0 1




(
x
y

)
=



1
2
3


 .

11G Groups, Rings and Modules
(a) Define the Smith Normal Form of a matrix. When is it guaranteed to exist?

(b) Deduce the classification of finitely generated abelian groups.

(c) How many conjugacy classes of matrices are there in GL10(Q) with minimal
polynomial X7 − 4X3?
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12E Analysis II
(a) (i) Show that a compact metric space must be complete.

(ii) If a metric space is complete and bounded, must it be compact? Give a
proof or counterexample.

(b) A metric space (X, d) is said to be totally bounded if for all ǫ > 0, there exists
N ∈ N and {x1, . . . , xN} ⊂ X such that X =

⋃N
i=1Bǫ(xi).

(i) Show that a compact metric space is totally bounded.

(ii) Show that a complete, totally bounded metric space is compact.

[Hint: If (xn) is Cauchy, then there is a subsequence (xnj
) such that

∑

j

d(xnj+1
, xnj

) < ∞ .]

(iii) Consider the space C[0, 1] of continuous functions f : [0, 1] → R, with the
metric

d(f, g) = min

{∫ 1

0
|f(t)− g(t)|dt, 1

}
.

Is this space compact? Justify your answer.

13G Metric and Topological Spaces
(a) Define the subspace, quotient and product topologies.

(b) Let X be a compact topological space and Y a Hausdorff topological space.
Prove that a continuous bijection f : X → Y is a homeomorphism.

(c) Let S = [0, 1]× [0, 1], equipped with the product topology. Let ∼ be the smallest
equivalence relation on S such that (s, 0) ∼ (s, 1) and (0, t) ∼ (1, t), for all s, t ∈ [0, 1]. Let

T = {(x, y, z) ∈ R3 | (
√

x2 + y2 − 2)2 + z2 = 1}

equipped with the subspace topology from R3. Prove that S/∼ and T are homeomorphic.

[You may assume without proof that S is compact.]

Part IB, Paper 4



7

14D Complex Methods
(a) Using the Bromwich contour integral, find the inverse Laplace transform of 1/s2.

The temperature u(r, t) of mercury in a spherical thermometer bulb r 6 a obeys
the radial heat equation

∂u

∂t
=

1

r

∂2

∂r2
(ru)

with unit diffusion constant. At t = 0 the mercury is at a uniform temperature u0 equal
to that of the surrounding air. For t > 0 the surrounding air temperature lowers such that
at the edge of the thermometer bulb

1

k

∂u

∂r

∣∣∣∣
r=a

= u0 − u(a, t) − t ,

where k is a constant.

(b) Find an explicit expression for U(r, s) =
∫∞
0 e−st u(r, t) dt.

(c) Show that the temperature of the mercury at the centre of the thermometer
bulb at late times is

u(0, t) ≈ u0 − t+
a

3k
+

a2

6
.

[You may assume that the late time behaviour of u(r, t) is determined by the singular part

of U(r, s) at s = 0.]

15E Geometry
Let H = {x + iy |x, y ∈ R, y > 0} be the upper-half plane with hyperbolic metric

dx2+dy2

y2
. Define the group PSL(2,R), and show that it acts by isometries on H. [If you

use a generation statement you must carefully state it.]

(a) Prove that PSL(2,R) acts transitively on the collection of pairs (l, P ), where l
is a hyperbolic line in H and P ∈ l.

(b) Let l+ ⊂ H be the imaginary half-axis. Find the isometries of H which fix l+

pointwise. Hence or otherwise find all isometries of H.

(c) Describe without proof the collection of all hyperbolic lines which meet l+ with
(signed) angle α, 0 < α < π. Explain why there exists a hyperbolic triangle with angles
α, β and γ whenever α+ β + γ < π.

(d) Is this triangle unique up to isometry? Justify your answer. [You may use
without proof the fact that Möbius maps preserve angles.]
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16A Variational Principles
Consider the functional

I[y] =

∫ ∞

−∞

(
1
2 y

′ 2 + 1
2 U(y)2

)
dx ,

where y(x) is subject to boundary conditions y(x) → a± as x → ±∞ with U(a±) = 0.
[You may assume the integral converges.]

(a) Find expressions for the first-order and second-order variations δI and δ2I
resulting from a variation δy that respects the boundary conditions.

(b) If a± = a, show that I[y] = 0 if and only if y(x) = a for all x. Explain briefly
how this is consistent with your results for δI and δ2I in part (a).

(c) Now suppose that U(y) = c2 − y2 with a± = ±c (c > 0). By considering an
integral of U(y)y′, show that

I[y] >
4c3

3
,

with equality if and only if y satisfies a first-order differential equation. Deduce that global
minima of I[y] with the specified boundary conditions occur precisely for

y(x) = c tanh{ c(x− x0) } ,

where x0 is a constant. How is the first-order differential equation that appears in this case
related to your general result for δI in part (a)?
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17B Methods
(a) Show that the operator

d4

dx4
+ p

d2

dx2
+ q

d

dx
+ r ,

where p(x), q(x) and r(x) are real functions, is self-adjoint (for suitable boundary
conditions which you need not state) if and only if

q =
dp

dx
.

(b) Consider the eigenvalue problem

d4y

dx4
+ p

d2y

dx2
+

dp

dx

dy

dx
= λy (∗)

on the interval [a, b] with boundary conditions

y(a) =
dy

dx
(a) = y(b) =

dy

dx
(b) = 0 .

Assuming that p(x) is everywhere negative, show that all eigenvalues λ are positive.

(c) Assume now that p ≡ 0 and that the eigenvalue problem (∗) is on the interval
[−c, c] with c > 0. Show that λ = 1 is an eigenvalue provided that

cos c sinh c± sin c cosh c = 0

and show graphically that this condition has just one solution in the range 0 < c < π.

[You may assume that all eigenfunctions are either symmetric or antisymmetric

about x = 0.]

Part IB, Paper 4 [TURN OVER]



10

18C Fluid Dynamics
The linear shallow-water equations governing the motion of a fluid layer in the

neighbourhood of a point on the Earth’s surface in the northern hemisphere are

∂u

∂t
− fv = −g

∂η

∂x
,

∂v

∂t
+ fu = −g

∂η

∂y
,

∂η

∂t
= −h

(
∂u

∂x
+

∂v

∂y

)
,

where u(x, y, t) and v(x, y, t) are the horizontal velocity components and η(x, y, t) is the
perturbation of the height of the free surface.

(a) Explain the meaning of the three positive constants f , g and h appearing in the
equations above and outline the assumptions made in deriving these equations.

(b) Show that ζ, the z-component of vorticity, satisfies

∂ζ

∂t
= −f

(
∂u

∂x
+

∂v

∂y

)
,

and deduce that the potential vorticity

q = ζ − f

h
η

satisfies
∂q

∂t
= 0 .

(c) Consider a steady geostrophic flow that is uniform in the latitudinal (y) direction.
Show that

d2η

dx2
− f2

gh
η =

f

g
q .

Given that the potential vorticity has the piecewise constant profile

q =

{
q1 , x < 0 ,

q2 , x > 0 ,

where q1 and q2 are constants, and that v → 0 as x → ±∞, solve for η(x) and v(x) in
terms of the Rossby radius R =

√
gh/f . Sketch the functions η(x) and v(x) in the case

q1 > q2.
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19H Statistics
Consider the linear model

Yi = βxi + ǫi for i = 1, . . . , n

where x1, . . . , xn are known and ǫ1, . . . , ǫn are i.i.d. N(0, σ2). We assume that the
parameters β and σ2 are unknown.

(a) Find the MLE β̂ of β. Explain why β̂ is the same as the least squares estimator
of β.

(b) State and prove the Gauss–Markov theorem for this model.

(c) For each value of θ ∈ R with θ 6= 0, determine the unbiased linear estimator β̃
of β which minimizes

Eβ,σ2 [exp(θ(β̃ − β))] .

20H Optimisation
(a) State and prove the max-flow min-cut theorem.

(b) (i) Apply the Ford–Fulkerson algorithm to find the maximum flow of the
network illustrated below, where S is the source and T is the sink.

6

7

3

1

8

2

4

3

8
S T

a

b

c

d

e

(ii) Verify the optimality of your solution using the max-flow min-cut theorem.

(iii) Is there a unique flow which attains the maximum? Explain your answer.

(c) Prove that the Ford–Fulkerson algorithm always terminates when the network
is finite, the capacities are integers, and the algorithm is initialised where the initial flow
is 0 across all edges. Prove also in this case that the flow across each edge is an integer.

END OF PAPER
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