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SECTION I

1G Groups, Rings and Modules
Prove that the ideal (2, 1+

√
−13) in Z[

√
−13] is not principal.

2E Analysis II
(a) Let A ⊂ R. What does it mean for a function f : A → R to be uniformly

continuous?

(b) Which of the following functions are uniformly continuous? Briefly justify your
answers.

(i) f(x) = x2 on R.

(ii) f(x) =
√
x on [0,∞).

(iii) f(x) = cos(1/x) on [1,∞).

3G Metric and Topological Spaces
Let X be a metric space.

(a) What does it mean for X to be compact? What does it mean for X to be
sequentially compact?

(b) Prove that if X is compact then X is sequentially compact.

4D Complex Methods
By considering the transformation w = i(1− z)/(1+ z), find a solution to Laplace’s

equation ∇2φ = 0 inside the unit disc D ⊂ C, subject to the boundary conditions

φ
∣∣
|z|=1

=

{
φ0 for arg(z) ∈ (0, π)

−φ0 for arg(z) ∈ (π, 2π) ,

where φ0 is constant. Give your answer in terms of (x, y) = (Re z, Im z).
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5E Geometry
State a formula for the area of a spherical triangle with angles α, β, γ.

Let n > 3. What is the area of a convex spherical n-gon with interior angles
α1, . . . , αn? Justify your answer.

Find the range of possible values for the interior angle of a regular convex spherical
n-gon.

6A Variational Principles
The function f with domain x > 0 is defined by f(x) = 1

ax
a, where a > 1 . Verify

that f is convex, using an appropriate sufficient condition.

Determine the Legendre transform f∗ of f , specifying clearly its domain of definition,
and find (f∗)∗.

Show that
xr

r
+
ys

s
> xy

where x, y > 0 and r and s are positive real numbers such that 1
r +

1
s = 1.

7D Methods
Define the discrete Fourier transform of a sequence {x0, x1, . . . , xN−1} of N complex

numbers.

Compute the discrete Fourier transform of the sequence

xn =
1

N
(1 + e2πin/N )N−1 for n = 0, . . . , N − 1 .
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8B Quantum Mechanics
Consider a quantum mechanical particle moving in two dimensions with Cartesian

coordinates x, y. Show that, for wavefunctions with suitable decay as x2 + y2 → ∞, the
operators

x and − i~
∂

∂x

are Hermitian, and similarly

y and − i~
∂

∂y

are Hermitian.

Show that if F and G are Hermitian operators, then

1

2
(FG+GF )

is Hermitian. Deduce that

L = −i~
(
x
∂

∂y
− y

∂

∂x

)
and D = −i~

(
x
∂

∂x
+ y

∂

∂y
+ 1

)

are Hermitian. Show that
[L,D] = 0.

9H Markov Chains
Suppose that (Xn) is a Markov chain with state space S.

(a) Give the definition of a communicating class.

(b) Give the definition of the period of a state a ∈ S.

(c) Show that if two states communicate then they have the same period.
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SECTION II

10F Linear Algebra
If q is a quadratic form on a finite-dimensional real vector space V , what is the

associated symmetric bilinear form ϕ(·, ·)? Prove that there is a basis for V with respect
to which the matrix for ϕ is diagonal. What is the signature of q?

If R 6 V is a subspace such that ϕ(r, v) = 0 for all r ∈ R and all v ∈ V , show that
q′(v + R) = q(v) defines a quadratic form on the quotient vector space V/R. Show that
the signature of q′ is the same as that of q.

If e, f ∈ V are vectors such that ϕ(e, e) = 0 and ϕ(e, f) = 1, show that there is a
direct sum decomposition V = span(e, f) ⊕ U such that the signature of q|U is the same
as that of q.

11G Groups, Rings and Modules
Let ω = 1

2(−1 +
√
−3).

(a) Prove that Z[ω] is a Euclidean domain.

(b) Deduce that Z[ω] is a unique factorisation domain, stating carefully any results
from the course that you use.

(c) By working in Z[ω], show that whenever x, y ∈ Z satisfy

x2 − x+ 1 = y3

then x is not congruent to 2 modulo 3.
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12E Analysis II
(a) Carefully state the Picard–Lindelöf theorem on solutions to ordinary differential

equations.

(b) Let X = C([1, b],Rn) be the set of continuous functions from a closed interval
[1, b] to R

n, and let || · || be a norm on R
n.

(i) Let f ∈ X. Show that for any c ∈ [0,∞) the norm

||f ||c = sup
t∈[1,b]

||f(t)t−c||

is Lipschitz equivalent to the usual sup norm on X.

(ii) Assume that F : [1, b]×R
n → R

n is continuous and Lipschitz in the second
variable, i.e. there exists M > 0 such that

‖F (t, x) − F (t, y)‖ 6M‖x− y‖

for all t ∈ [1, b] and all x, y ∈ R
n. Define ϕ : X → X by

ϕ(f)(t) =

∫ t

1
F (l, f(l)) dl

for t ∈ [1, b].

Show that there is a choice of c such that ϕ is a contraction on (X, || · ||c).
Deduce that for any y0 ∈ R

n, the differential equation

Df(t) = F (t, f(t))

has a unique solution on [1, b] with f(1) = y0.

13F Complex Analysis
Define the winding number n(γ,w) of a closed path γ : [a, b] → C around a point

w ∈ C which does not lie on the image of γ. [You do not need to justify its existence.]

If f is a meromorphic function, define the order of a zero z0 of f and of a pole w0

of f . State the Argument Principle, and explain how it can be deduced from the Residue
Theorem.

How many roots of the polynomial

z4 + 10z3 + 4z2 + 10z + 5

lie in the right-hand half plane?
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14E Geometry
Define a geodesic triangulation of an abstract closed smooth surface. Define the

Euler number of a triangulation, and state the Gauss–Bonnet theorem for closed smooth
surfaces. Given a vertex in a triangulation, its valency is defined to be the number of
edges incident at that vertex.

(a) Given a triangulation of the torus, show that the average valency of a vertex of
the triangulation is 6.

(b) Consider a triangulation of the sphere.

(i) Show that the average valency of a vertex is strictly less than 6.

(ii) A triangulation can be subdivided by replacing one triangle ∆ with three
sub-triangles, each one with vertices two of the original ones, and a fixed
interior point of ∆.

Using this, or otherwise, show that there exist triangulations of the sphere
with average vertex valency arbitrarily close to 6.

(c) Suppose S is a closed abstract smooth surface of everywhere negative curvature.
Show that the average vertex valency of a triangulation of S is bounded above and below.
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15D Methods
By differentiating the expression ψ(t) = H(t) sin(αt)/α, where α is a constant and

H(t) is the Heaviside step function, show that

d2ψ

dt2
+ α2ψ = δ(t) ,

where δ(t) is the Dirac δ-function.

Hence, by taking a Fourier transform with respect to the spatial variables only,
derive the retarded Green’s function for the wave operator ∂2t − c2∇2 in three spatial
dimensions.

[You may use that

1

2π

∫

R3

eik·(x−y) sin(kct)

kc
d3k = − i

c|x− y|

∫ ∞

−∞
eik|x−y| sin(kct) dk

without proof.]

Thus show that the solution to the homogeneous wave equation ∂2t u− c2∇2u = 0,
subject to the initial conditions u(x, 0) = 0 and ∂tu(x, 0) = f(x), may be expressed as

u(x, t) = 〈f〉 t ,

where 〈f〉 is the average value of f on a sphere of radius ct centred on x. Interpret this
result.

16B Quantum Mechanics
Consider a particle of unit mass in a one-dimensional square well potential

V (x) = 0 for 0 6 x 6 π ,

with V infinite outside. Find all the stationary states ψn(x) and their energies En, and
write down the general normalized solution of the time-dependent Schrödinger equation
in terms of these.

The particle is initially constrained by a barrier to be in the ground state in the
narrower square well potential

V (x) = 0 for 0 6 x 6
π

2
,

with V infinite outside. The barrier is removed at time t = 0, and the wavefunction
is instantaneously unchanged. Show that the particle is now in a superposition of
stationary states of the original potential well, and calculate the probability that an energy
measurement will yield the result En.
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17A Electromagnetism
The electric and magnetic fields E, B in an inertial frame S are related to the fields

E′, B′ in a frame S ′ by a Lorentz transformation. Given that S ′ moves in the x-direction
with speed v relative to S, and that

E′
y = γ(Ey − vBz) , B′

z = γ(Bz − (v/c2)Ey) ,

write down equations relating the remaining field components and define γ. Use your
answers to show directly that E′ ·B′ = E ·B.

Give an expression for an additional, independent, Lorentz-invariant function of the
fields, and check that it is invariant for the special case when Ey = E and By = B are the
only non-zero components in the frame S.

Now suppose in addition that cB = λE with λ a non-zero constant. Show that the
angle θ between the electric and magnetic fields in S ′ is given by

cos θ = f(β) =
λ(1− β2)

{(1 + λ2β2)(λ2 + β2)}1/2

where β = v/c. By considering the behaviour of f(β) as β approaches its limiting values,
show that the relative velocity of the frames can be chosen so that the angle takes any
value in one of the ranges 0 6 θ < π/2 or π/2 < θ 6 π, depending on the sign of λ.

18C Fluid Dynamics
A cubic box of side 2h, enclosing the region 0 < x < 2h, 0 < y < 2h, −h < z < h,

contains equal volumes of two incompressible fluids that remain distinct. The system is
initially at rest, with the fluid of density ρ1 occupying the region 0 < z < h and the
fluid of density ρ2 occupying the region −h < z < 0, and with gravity (0, 0,−g). The
interface between the fluids is then slightly perturbed. Derive the linearized equations
and boundary conditions governing small disturbances to the initial state.

In the case ρ2 > ρ1, show that the angular frequencies ω of the normal modes are
given by

ω2 =

(
ρ2 − ρ1
ρ1 + ρ2

)
gk tanh(kh)

and express the allowable values of the wavenumber k in terms of h. Identify the lowest-
frequency non-trivial mode(s). Comment on the limit ρ1 ≪ ρ2. What physical behaviour
is expected in the case ρ1 > ρ2?
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19C Numerical Analysis
(a) Let w(x) be a positive weight function on the interval [a, b]. Show that

〈f, g〉 =
∫ b

a
f(x)g(x)w(x) dx

defines an inner product on C[a, b].

(b) Consider the sequence of polynomials pn(x) defined by the three-term recurrence
relation

pn+1(x) = (x− αn)pn(x)− βnpn−1(x) , n = 1, 2, . . . , (∗)
where

p0(x) = 1 , p1(x) = x− α0 ,

and the coefficients αn (for n > 0) and βn (for n > 1) are given by

αn =
〈pn, xpn〉
〈pn, pn〉

, βn =
〈pn, pn〉

〈pn−1, pn−1〉
.

Prove that this defines a sequence of monic orthogonal polynomials on [a, b].

(c) The Hermite polynomials Hen(x) are orthogonal on the interval (−∞,∞) with
weight function e−x2/2. Given that

Hen(x) = (−1)nex
2/2 d

n

dxn

(
e−x2/2

)
,

deduce that the Hermite polynomials satisfy a relation of the form (∗) with αn = 0 and
βn = n. Show that 〈Hen,Hen〉 = n!

√
2π.

(d) State, without proof, how the properties of the Hermite polynomial HeN (x), for
some positive integer N , can be used to estimate the integral

∫ ∞

−∞
f(x) e−x2/2 dx ,

where f(x) is a given function, by the method of Gaussian quadrature. For which
polynomials is the quadrature formula exact?

Part IB, Paper 3



11

20H Statistics
Suppose that X1, . . . ,Xn are i.i.d. N(µ, σ2). Let

X =
1

n

n∑

i=1

Xi and SXX =
n∑

i=1

(Xi −X)2 .

(a) Compute the distributions of X and SXX and show that X and SXX are
independent.

(b) Write down the distribution of
√
n(X − µ)/

√
SXX(n− 1).

(c) For α ∈ (0, 1), find a 100(1 − α)% confidence interval in each of the following
situations:

(i) for µ when σ2 is known;

(ii) for µ when σ2 is not known;

(iii) for σ2 when µ is not known.

(d) Suppose that X̃1, . . . , X̃ñ are i.i.d. N(µ̃, σ̃2). Explain how you would use the F -
test to test the hypothesis H1 : σ

2 > σ̃2 against the hypothesis H0 : σ
2 = σ̃2. Does the F -

test depend on whether µ, µ̃ are known?

21H Optimisation
(a) Suppose that A ∈ R

m×n and b ∈ R
m, with n > m. What does it mean for

x ∈ R
n to be a basic feasible solution of the equation Ax = b?

Assume that the m rows of A are linearly independent, every set of m columns is
linearly independent, and every basic solution has exactly m non-zero entries. Prove that
the extreme points of X (b) = {x > 0 : Ax = b} are the basic feasible solutions of Ax = b.
[Here, x > 0 means that each of the coordinates of x are at least 0.]

(b) Use the simplex method to solve the linear program

max 4x1 + 3x2 + 7x3

s.t. x1 + 3x2 + x3 6 14

4x1 + 3x2 + 2x3 6 5

− x1 + x2 − x3 > −2

x1, x2, x3 > 0.

END OF PAPER
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