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SECTION I

1F Linear Algebra
Define a basis of a vector space V .

If V has a finite basis B, show using only the definition that any other basis B′ has
the same cardinality as B.

2F Complex Analysis or Complex Methods
What is the Laurent series for a function f defined in an annulus A? Find the

Laurent series for f(z) = 10
(z+2)(z2+1) on the annuli

A1 = {z ∈ C | 0 < |z| < 1} and

A2 = {z ∈ C | 1 < |z| < 2} .

3E Geometry
Describe the Poincaré disc model D for the hyperbolic plane by giving the appro-

priate Riemannian metric.

Calculate the distance between two points z1, z2 ∈ D. You should carefully state
any results about isometries of D that you use.

4A Variational Principles
A function φ = xy − yz is defined on the surface x2 + 2y2 + z2 = 1. Find the

location (x, y, z) of every stationary point of this function.

5C Fluid Dynamics
A viscous fluid flows steadily down a plane that is inclined at an angle α to the

horizontal. The fluid layer is of uniform thickness and has a free upper surface. Determine
the velocity profile in the direction perpendicular to the plane and also the volume flux
(per unit width), in terms of the gravitational acceleration g, the angle α, the kinematic
viscosity ν and the thickness h of the fluid layer.

Show that the volume flux is reduced if the free upper surface is replaced by a
stationary plane boundary, and give a physical explanation for this.
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6C Numerical Analysis
Let [a, b] be the smallest interval that contains the n + 1 distinct real numbers

x0, x1, . . . , xn, and let f be a continuous function on that interval.

Define the divided difference f [x0, x1, . . . , xm] of degree m 6 n.

Prove that the polynomial of degree n that interpolates the function f at the points
x0, x1, . . . , xn is equal to the Newton polynomial

pn(x) = f [x0] + f [x0, x1](x− x0) + · · · + f [x0, x1, . . . , xn]

n−1∏

i=0

(x− xi) .

Prove the recursive formula

f [x0, x1, . . . , xm] =
f [x1, x2, . . . , xm]− f [x0, x1, . . . , xm−1]

xm − x0

for 1 6 m 6 n.

7H Statistics
Suppose that X1, . . . ,Xn are i.i.d. N(µ, σ2) random variables.

(a) Compute the MLEs µ̂, σ̂2 for the unknown parameters µ, σ2.

(b) Give the definition of an unbiased estimator. Determine whether µ̂, σ̂2 are
unbiased estimators for µ, σ2.

8H Optimisation
Suppose that f is an infinitely differentiable function on R. Assume that there exist

constants 0 < C1, C2 < ∞ so that |f ′′(x)| > C1 and |f ′′′(x)| 6 C2 for all x ∈ R. Fix
x0 ∈ R and for each n ∈ N set

xn = xn−1 −
f ′(xn−1)

f ′′(xn−1)
.

Let x∗ be the unique value of x where f attains its minimum. Prove that

|x∗ − xn+1| 6
C2

2C1
|x∗ − xn|

2 for all n ∈ N.

[Hint: Express f ′(x∗) in terms of the Taylor series for f ′ at xn using the Lagrange form

of the remainder: f ′(x∗) = f ′(xn)+f
′′(xn)(x

∗−xn)+
1
2f

′′′(yn)(x
∗−xn)

2 where yn is between

xn and x∗.]
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SECTION II

9F Linear Algebra
What is the adjugate adj(A) of an n× n matrix A? How is it related to det(A)?

(a) Define matrices B0, B1, . . . , Bn−1 by

adj(tI −A) =
n−1∑

i=0

Bit
n−1−i

and scalars c0, c1, . . . , cn by

det(tI −A) =

n∑

j=0

cjt
n−j .

Find a recursion for the matrices Bi in terms of A and the cj ’s.

(b) By considering the partial derivatives of the multivariable polynomial

p(t1, t2, . . . , tn) = det







t1 0 · · · 0
0 t2 · · · 0
...

...
. . .

...
0 0 · · · tn


−A


 ,

show that
d

dt
(det(tI −A)) = Tr(adj(tI −A)) .

(c) Hence show that the cj ’s may be expressed in terms of Tr(A),Tr(A2), . . . ,Tr(An).

10G Groups, Rings and Modules
(a) Let G be a group of order p4, for p a prime. Prove that G is not simple.

(b) State Sylow’s theorems.

(c) Let G be a group of order p2q2, where p, q are distinct odd primes. Prove that
G is not simple.
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11E Analysis II
Let A ⊂ R

n be an open subset. State what it means for a function f : A → R
m to

be differentiable at a point p ∈ A, and define its derivative Df(p).

State and prove the chain rule for the derivative of g ◦ f , where g : Rm → R
r is a

differentiable function.

Let M =Mn(R) be the vector space of n× n real-valued matrices, and V ⊂M the
open subset consisting of all invertible ones. Let f : V → V be given by f(A) = A−1.

(a) Show that f is differentiable at the identity matrix, and calculate its derivative.

(b) For C ∈ V , let lC , rC : M → M be given by lC(A) = CA and rC(A) = AC.
Show that rC ◦ f ◦ lC = f on V . Hence or otherwise, show that f is differentiable at any
point of V , and calculate Df(C)(h) for h ∈M .

12G Metric and Topological Spaces
Consider the set of sequences of integers

X = {(x1, x2, . . .) | xn ∈ Z for all n} .

Define

nmin((xn), (yn)) =

{
∞ xn = yn for all n

min{n | xn 6= yn} otherwise

for two sequences (xn), (yn) ∈ X. Let

d((xn), (yn)) = 2−nmin((xn),(yn))

where, as usual, we adopt the convention that 2−∞ = 0.

(a) Prove that d defines a metric on X.

(b) What does it mean for a metric space to be complete? Prove that (X, d) is
complete.

(c) Is (X, d) path connected? Justify your answer.
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13F Complex Analysis or Complex Methods
State and prove Jordan’s lemma.

What is the residue of a function f at an isolated singularity a? If f(z) = g(z)
(z−a)k

with k a positive integer, g analytic, and g(a) 6= 0, derive a formula for the residue of f
at a in terms of derivatives of g.

Evaluate ∫
∞

−∞

x3 sinx

(1 + x2)2
dx .

14B Methods
The Bessel functions Jn(r) (n > 0) can be defined by the expansion

eir cos θ = J0(r) + 2
∞∑

n=1

inJn(r) cos nθ . (∗)

By using Cartesian coordinates x = r cos θ, y = r sin θ, or otherwise, show that

(∇2 + 1)eir cos θ = 0 .

Deduce that Jn(r) satisfies Bessel’s equation

(
r2
d2

dr2
+ r

d

dr
− (n2 − r2)

)
Jn(r) = 0 .

By expanding the left-hand side of (∗) up to cubic order in r, derive the series
expansions of J0(r), J1(r), J2(r) and J3(r) up to this order.
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15B Quantum Mechanics
Starting from the time-dependent Schrödinger equation, show that a stationary

state ψ(x) of a particle of mass m in a harmonic oscillator potential in one dimension with
frequency ω satisfies

−
~
2

2m

d2ψ

dx2
+

1

2
mω2x2ψ = Eψ .

Find a rescaling of variables that leads to the simplified equation

−
d2ψ

dy2
+ y2ψ = εψ .

Setting ψ = f(y)e−
1

2
y2 , find the equation satisfied by f(y).

Assume now that f is a polynomial

f(y) = yN + aN−1 y
N−1 + aN−2 y

N−2 + . . .+ a0 .

Determine the value of ε and deduce the corresponding energy level E of the harmonic
oscillator. Show that if N is even then the stationary state ψ(x) has even parity.

16A Electromagnetism
Let E(x) be the electric field and ϕ(x) the scalar potential due to a static charge

density ρ(x), with all quantities vanishing as r = |x| becomes large. The electrostatic
energy of the configuration is given by

U =
ε0
2

∫
|E|2 dV =

1

2

∫
ρϕdV , (∗)

with the integrals taken over all space. Verify that these integral expressions agree.

Suppose that a total charge Q is distributed uniformly in the region a 6 r 6 b and
that ρ = 0 otherwise. Use the integral form of Gauss’s Law to determine E(x) at all points
in space and, without further calculation, sketch graphs to indicate how |E| and ϕ depend
on position.

Consider the limit b → a with Q fixed. Comment on the continuity of E and ϕ.
Verify directly from each of the integrals in (∗) that U = Qϕ(a)/2 in this limit.

Now consider a small change δQ in the total charge Q. Show that the first-order
change in the energy is δU = δQϕ(a) and interpret this result.
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17C Fluid Dynamics
Explain why the irrotational flow of an incompressible fluid can be expressed in

terms of a velocity potential φ that satisfies Laplace’s equation.

The axis of a stationary cylinder of radius a coincides with the z-axis of a Cartesian
coordinate system (x, y, z) with unit vectors (ex, ey, ez). A fluid of density ρ flows steadily
past the cylinder such that the velocity field u is independent of z and has no component
in the z-direction. The flow is irrotational but there is a constant non-zero circulation

∮
u · dr = κ

around every closed curve that encloses the cylinder once in a positive sense. Far from
the cylinder, the velocity field tends towards the uniform flow u = U ex, where U is a
constant.

State the boundary conditions on the velocity potential, in terms of polar coordi-
nates (r, θ) in the (x, y)-plane. Explain why the velocity potential is not required to be a
single-valued function of position. Hence obtain the appropriate solution φ(r, θ), in terms
of a, U and κ.

Neglecting gravity, show that the net force on the cylinder, per unit length in the
z-direction, is

−ρκU ey .

Determine the number and location of stagnation points in the flow as a function
of the dimensionless parameter

λ =
κ

4πUa
.
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18C Numerical Analysis
(a) An s-step method for solving the ordinary differential equation

dy

dt
= f(t,y)

is given by
s∑

l=0

ρl yn+l = h
s∑

l=0

σl f(tn+l,yn+l) , n = 0, 1, . . . ,

where ρl and σl (l = 0, 1, . . . , s) are constant coefficients, with ρs = 1, and h is the
time-step. Prove that the method is of order p > 1 if and only if

ρ(ez)− zσ(ez) = O(zp+1)

as z → 0, where

ρ(w) =

s∑

l=0

ρlw
l , σ(w) =

s∑

l=0

σlw
l .

(b) Show that the Adams–Moulton method

yn+2 = yn+1 +
h

12

(
5 f(tn+2,yn+2) + 8 f(tn+1,yn+1)− f(tn,yn)

)

is of third order and convergent.

[You may assume the Dahlquist equivalence theorem if you state it clearly.]

19H Statistics
State and prove the Neyman–Pearson lemma.

Suppose that X1, . . . ,Xn are i.i.d. exp(λ) random variables where λ is an unknown
parameter. We wish to test the hypothesis H0 : λ = λ0 against the hypothesis H1 : λ = λ1
where λ1 < λ0.

(a) Find the critical region of the likelihood ratio test of size α in terms of the
sample mean X.

(b) Define the power function of a hypothesis test and identify the power function in
the setting described above in terms of the Γ(n, λ) probability distribution function. [You
may use without proof that X1 + · · ·+Xn is distributed as a Γ(n, λ) random variable.]

(c) Define what it means for a hypothesis test to be uniformly most powerful. Deter-
mine whether the likelihood ratio test considered above is uniformly most powerful for test-
ingH0 : λ = λ0 against H̃1 : λ < λ0.
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20H Markov Chains
Let P be a transition matrix for a Markov chain (Xn) on a state space with N

elements with N < ∞. Assume that the Markov chain is aperiodic and irreducible and
let π be its unique invariant distribution. Assume that X0 ∼ π.

(a) Let P ∗(x, y) = P[X0 = y |X1 = x]. Show that P ∗(x, y) = π(y)P (y, x)/π(x).

(b) Let T = min{n > 1 : Xn = X0}. Compute E[T ] in terms of an explicit function
of N .

(c) Suppose that a cop and a robber start from a common state chosen from π. The
robber then takes one step according to P ∗ and stops. The cop then moves according to P
independently of the robber until the cop catches the robber (i.e., the cop visits the state
occupied by the robber). Compute the expected amount of time for the cop to catch the
robber.

END OF PAPER
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