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SECTION I

1E Linear Algebra
Let V be a real vector space. Define the dual vector space V ∗ of V . If U is a

subspace of V , define the annihilator U0 of U . If x1, x2, . . . , xn is a basis for V , define its
dual x∗1, x

∗

2, . . . , x
∗

n and prove that it is a basis for V ∗.

If V has basis x1, x2, x3, x4 and U is the subspace spanned by

x1 + 2x2 + 3x3 + 4x4 and 5x1 + 6x2 + 7x3 + 8x4,

give a basis for U0 in terms of the dual basis x∗1, x
∗

2, x
∗

3, x
∗

4.

2G Groups, Rings and Modules
Let R be a principal ideal domain and x a non-zero element of R. We define a new

ring R′ as follows. We define an equivalence relation ∼ on R× {xn | n ∈ Z>0} by

(r, xn) ∼ (r′, xn
′

)

if and only if xn
′

r = xnr′. The underlying set of R′ is the set of ∼-equivalence classes. We
define addition on R′ by

[(r, xn)] + [(r′, xn
′

)] = [(xn
′

r + xnr′, xn+n′

)]

and multiplication by [(r, xn)][(r′, xn
′

)] = [(rr′, xn+n′

)].

(a) Show that R′ is a well defined ring.

(b) Prove that R′ is a principal ideal domain.

3F Analysis II
Show that ‖f‖1 =

∫ 1
0 |f(x)| dx defines a norm on the space C([0, 1]) of continuous

functions f : [0, 1] → R.

Let S be the set of continuous functions g : [0, 1] → R with g(0) = g(1) = 0.
Show that for each continuous function f : [0, 1] → R, there is a sequence gn ∈ S with
supx∈[0,1] |gn(x)| 6 supx∈[0,1] |f(x)| such that ‖f − gn‖1 → 0 as n→ ∞.

Show that if f : [0, 1] → R is continuous and
∫ 1
0 f(x)g(x) dx = 0 for every g ∈ S

then f = 0.
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4E Metric and Topological Spaces
What does it mean to say that d is a metric on a set X? What does it mean to

say that a subset of X is open with respect to the metric d? Show that the collection of
subsets of X that are open with respect to d satisfies the axioms of a topology.

For X = C[0, 1], the set of continuous functions f : [0, 1] → R, show that the metrics

d1(f, g) =

∫ 1

0
|f(x)− g(x)|dx

d2(f, g) =

[
∫ 1

0
|f(x)− g(x)|2 dx

]1/2

give different topologies.

5C Methods
Show that

a(x, y)

(

dy

ds

)2

− 2b(x, y)
dx

ds

dy

ds
+ c(x, y)

(

dx

ds

)2

= 0

along a characteristic curve (x(s), y(s)) of the 2nd-order pde

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy = f(x, y) .

6C Electromagnetism
Derive the Biot–Savart law

B(r) =
µ0

4π

∫

V

j(r′)× (r− r′)

|r− r′|3
dV

from Maxwell’s equations, where the time–independent current j(r) vanishes outside V .
[You may assume that the vector potential can be chosen to be divergence–free.]
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7D Fluid Dynamics
The Euler equations for steady fluid flow u in a rapidly rotating system can be

written
ρf × u = −∇p+ ρg,

where ρ is the density of the fluid, p is its pressure, g is the acceleration due to gravity and
f = (0, 0, f) is the constant Coriolis parameter in a Cartesian frame of reference (x, y, z),
with z pointing vertically upwards.

Fluid occupies a layer of slowly-varying height h(x, y). Given that the pressure
p = p0 is constant at z = h and that the flow is approximately horizontal with components
u = (u, v, 0), show that the contours of h are streamlines of the horizontal flow. What is
the leading-order horizontal volume flux of fluid between two locations at which h = h0
and h = h0 +∆h, where ∆h≪ h0?

Identify the dimensions of all the quantities involved in your expression for the
volume flux and show that your expression is dimensionally consistent.

8H Statistics
Define a simple hypothesis. Define the terms size and power for a test of one simple

hypothesis against another. State the Neyman-Pearson lemma.

There is a single observation of a random variable X which has a probability density
function f(x). Construct a best test of size 0.05 for the null hypothesis

H0 : f(x) = 1
2 , −1 6 x 6 1,

against the alternative hypothesis

H1 : f(x) =
3

4
(1− x2), −1 6 x 6 1.

Calculate the power of your test.

9H Optimisation
What does it mean to state that f : Rn → R is a convex function?

Suppose that f, g : Rn → R are convex functions, and for b ∈ R let

φ(b) = inf{f(x) : g(x) 6 b}.

Assuming φ(b) is finite for all b ∈ R, prove that the function φ is convex.
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SECTION II

10E Linear Algebra
If X is an n×m matrix over a field, show that there are invertible matrices P and

Q such that

Q−1XP =

[

Ir 0
0 0

]

for some 0 6 r 6 min(m,n), where Ir is the identity matrix of dimension r.

For a square matrix of the form A =

[

B D

0 C

]

with B and C square matrices, prove

that det(A) = det(B) det(C).

If A ∈ Mn×n(C) and B ∈ Mm×m(C) have no common eigenvalue, show that the
linear map

L :Mn×m(C) −→Mn×m(C)

X 7−→ AX −XB

is injective.

11G Groups, Rings and Modules

(a) Prove that every principal ideal domain is a unique factorization domain.

(b) Consider the ring R = {f(X) ∈ Q[X] | f(0) ∈ Z}.

(i) What are the units in R?

(ii) Let f(X) ∈ R be irreducible. Prove that either f(X) = ±p, for p ∈ Z a
prime, or deg(f)> 1 and f(0) = ±1.

(iii) Prove that f(X) = X is not expressible as a product of irreducibles.
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12F Analysis II

(a) Let (X, d) be a metric space, A a non-empty subset of X and f : A → R. Define
what it means for f to be Lipschitz. If f is Lipschitz with Lipschitz constant L and
if

F (x) = inf
y∈A

(f(y) + Ld(x, y))

for each x ∈ X, show that F (x) = f(x) for each x ∈ A and that F : X → R is
Lipschitz with Lipschitz constant L. (Be sure to justify that F (x) ∈ R, i.e. that the
infimum is finite for every x ∈ X.)

(b) What does it mean to say that two norms on a vector space are Lipschitz equivalent?

Let V be an n-dimensional real vector space equipped with a norm ‖ · ‖. Let
{e1, e2, . . . , en} be a basis for V . Show that the map g : Rn → R defined by
g(x1, x2, . . . , xn) = ‖x1e1 + x2e2 + . . . + xnen‖ is continuous. Deduce that any two
norms on V are Lipschitz equivalent.

(c) Prove that for each positive integer n and each a ∈ (0, 1], there is a constant C > 0
with the following property: for every polynomial p of degree 6 n, there is a point
y ∈ [0, a] such that

sup
x∈[0,1]

|p′(x)| 6 C|p(y)|,

where p′ is the derivative of p.
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13A Complex Analysis or Complex Methods

(a) Let f(z) be a complex function. Define the Laurent series of f(z) about z = z0,
and give suitable formulae in terms of integrals for calculating the coefficients of the
series.

(b) Calculate, by any means, the first 3 terms in the Laurent series about z = 0 for

f(z) =
1

e2z − 1
.

Indicate the range of values of |z| for which your series is valid.

(c) Let

g(z) =
1

2z
+

m
∑

k=1

z

z2 + π2k2
.

Classify the singularities of F (z) = f(z)− g(z) for |z| < (m+ 1)π.

(d) By considering
∮

CR

F (z)

z2
dz

where CR = {|z| = R} for some suitably chosen R > 0, show that

∞
∑

k=1

1

k2
=
π2

6
.
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14G Geometry
For any matrix

A =

(

a b

c d

)

∈ SL(2,R),

the corresponding Möbius transformation is

z 7→ Az =
az + b

cz + d
,

which acts on the upper half-plane H, equipped with the hyperbolic metric ρ.

(a) Assuming that |tr A| > 2, prove that A is conjugate in SL(2,R) to a diagonal matrix
B. Determine the relationship between |tr A| and ρ(i, Bi).

(b) For a diagonal matrix B with |tr B| > 2, prove that

ρ(x,Bx) > ρ(i, Bi)

for all x ∈ H not on the imaginary axis.

(c) Assume now that |tr A| < 2. Prove that A fixes a point in H.

(d) Give an example of a matrix A in SL(2,R) that does not preserve any point or
hyperbolic line in H. Justify your answer.

15B Variational Principles
Derive the Euler-Lagrange equation for the integral

I[y] =

∫ x1

x0

f(y, y′, y′′, x) dx,

when y(x) and y′(x) take given values at the fixed endpoints.

Show that the only function y(x) with y(0) = 1, y′(0) = 2 and y(x) → 0 as x→ ∞
for which the integral

I[y] =

∫

∞

0

(

y2 + (y′)2 + (y′ + y′′)2
)

dx

is stationary is (3x+ 1)e−x.
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16A Methods

(a) Let f(x) be a 2π-periodic function (i.e. f(x) = f(x+2π) for all x) defined on [−π, π]
by

f(x) =

{

x x ∈ [0, π]

−x x ∈ [−π, 0]

Find the Fourier series of f(x) in the form

f(x) = 1
2a0 +

∞
∑

n=1

an cos(nx) +

∞
∑

n=1

bn sin(nx).

(b) Find the general solution to

y′′ + 2y′ + y = f(x)

where f(x) is as given in part (a) and y(x) is 2π-periodic.

17B Quantum Mechanics
For an electron in a hydrogen atom, the stationary-state wavefunctions are of the

form ψ(r, θ, φ) = R(r)Ylm(θ, φ), where in suitable units R obeys the radial equation

d2R

dr2
+

2

r

dR

dr
−
l(l + 1)

r2
R+ 2

(

E +
1

r

)

R = 0 .

Explain briefly how the terms in this equation arise.

This radial equation has bound-state solutions of energy E = En, where
En = − 1

2n2 (n = 1, 2, 3, . . . ). Show that when l = n − 1, there is a solution of the form

R(r) = rαe−r/n, and determine α. Find the expectation value 〈r〉 in this state.

Determine the total degeneracy of the energy level with energy En.

18C Electromagnetism
A plane with unit normal n supports a charge density and a current density that

are each time–independent. Show that the tangential components of the electric field and
the normal component of the magnetic field are continuous across the plane.

Albert moves with constant velocity v = vn relative to the plane. Find the boundary
conditions at the plane on the normal component of the magnetic field and the tangential
components of the electric field as seen in Albert’s frame.
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19D Numerical Analysis
Show that the recurrence relation

p0(x) = 1,

pn+1(x) = qn+1(x)−
n
∑

k=0

〈qn+1, pk〉

〈pk, pk〉
pk(x),

where 〈·, ·〉 is an inner product on real polynomials, produces a sequence of orthogonal,
monic, real polynomials pn(x) of degree exactly n of the real variable x, provided that qn
is a monic, real polynomial of degree exactly n.

Show that the choice qn+1(x) = xpn(x) leads to a three-term recurrence relation of
the form

p0(x) = 1,

p1(x) = x− α0,

pn+1(x) = (x− αn)pn(x)− βnpn−1(x),

where αn and βn are constants that should be determined in terms of the inner products
〈pn, pn〉, 〈pn−1, pn−1〉 and 〈pn, xpn〉.

Use this recurrence relation to find the first four monic Legendre polynomials, which
correspond to the inner product defined by

〈p, q〉 ≡

∫ 1

−1
p(x)q(x)dx.

20H Markov Chains
For a finite irreducible Markov chain, what is the relationship between the invariant

probability distribution and the mean recurrence times of states?

A particle moves on the 2n vertices of the hypercube, {0, 1}n, in the following way:
at each step the particle is equally likely to move to each of the n adjacent vertices,
independently of its past motion. (Two vertices are adjacent if the Euclidean distance
between them is one.) The initial vertex occupied by the particle is (0, 0, . . . , 0). Calculate
the expected number of steps until the particle

(i) first returns to (0, 0, . . . , 0),

(ii) first visits (0, 0, . . . , 0, 1),

(iii) first visits (0, 0, . . . , 0, 1, 1).

END OF PAPER
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