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SECTION I

1B Differential Equations
Consider the following difference equation for real un:

un+1 = aun(1− u2n)

where a is a real constant.

For −∞ < a < ∞ find the steady-state solutions, i.e. those with un+1 = un for all n,
and determine their stability, making it clear how the number of solutions and the stability
properties vary with a. [You need not consider in detail particular values of a which sepa-
rate intervals with different stability properties.]

2B Differential Equations
Show that for given P (x, y), Q(x, y) there is a function F (x, y) such that, for any

function y(x),

P (x, y) +Q(x, y)
dy

dx
=

d

dx
F (x, y)

if and only if
∂P

∂y
=

∂Q

∂x
.

Now solve the equation

(2y + 3x)
dy

dx
+ 4x3 + 3y = 0 .

3F Probability
Let X and Y be independent Poisson random variables with parameters λ and µ

respectively.

(i) Show that X + Y is Poisson with parameter λ+ µ.

(ii) Show that the conditional distribution of X given X + Y = n is binomial, and find
its parameters.
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4F Probability

(a) State the Cauchy–Schwarz inequality and Markov’s inequality. State and prove
Jensen’s inequality.

(b) For a discrete random variable X, show that Var(X) = 0 implies that X is constant,
i.e. there is x ∈ R such that P(X = x) = 1.
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SECTION II

5B Differential Equations
By choosing a suitable basis, solve the equation

(

1 2
1 0

)(

ẋ
ẏ

)

+

(

−2 5
2 −1

)(

x
y

)

= e−4t

(

3b
2

)

+ e−t

(

−3
c− 1

)

,

subject to the initial conditions x(0) = 0, y(0) = 0.

Explain briefly what happens in the cases b = 2 or c = 2.

6B Differential Equations
The function u(x, y) satisfies the partial differential equation

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
= 0,

where a, b and c are non-zero constants.

Defining the variables ξ = αx + y and η = βx + y, where α and β are constants,
and writing v(ξ, η) = u(x, y) show that

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
= A(α, β)

∂2v

∂ξ2
+B(α, β)

∂2v

∂ξ∂η
+ C(α, β)

∂2v

∂η2
,

where you should determine the functions A(α, β), B(α, β) and C(α, β).

If the quadratic as2 + bs+ c = 0 has distinct real roots then show that α and β can
be chosen such that A(α, β) = C(α, β) = 0 and B(α, β) 6= 0.

If the quadratic as2 + bs + c = 0 has a repeated root then show that α and β can
be chosen such that A(α, β) = B(α, β) = 0 and C(α, β) 6= 0.

Hence find the general solutions of the equations

(i)
∂2u

∂x2
+ 3

∂2u

∂x∂y
+ 2

∂2u

∂y2
= 0

and

(ii)
∂2u

∂x2
+ 2

∂2u

∂x∂y
+

∂2u

∂y2
= 0.
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7B Differential Equations
Consider the differential equation

x2
d2y

dx2
+ x

dy

dx
− (x2 + α2)y = 0.

What values of x are ordinary points of the differential equation? What values of
x are singular points of the differential equation, and are they regular singular points or
irregular singular points? Give clear definitions of these terms to support your answers.

For α not equal to an integer there are two linearly independent power series
solutions about x = 0. Give the forms of the two power series and the recurrence relations
that specify the relation between successive coefficients. Give explicitly the first three
terms in each power series.

For α equal to an integer explain carefully why the forms you have specified do not

give two linearly independent power series solutions. Show that for such values of α there
is (up to multiplication by a constant) one power series solution, and give the recurrence
relation between coefficients. Give explicitly the first three terms.

If y1(x) is a solution of the above second-order differential equation then

y2(x) = y1(x)

∫ x

c

1

s[y1(s)]2
ds,

where c is an arbitrarily chosen constant, is a second solution that is linearly independent
of y1(x). For the case α = 1, taking y1(x) to be a power series, explain why the second
solution y2(x) is not a power series.

[You may assume that any power series you use are convergent.]
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8B Differential Equations
The temperature T in an oven is controlled by a heater which provides heat at rate

Q(t). The temperature of a pizza in the oven is U . Room temperature is the constant
value Tr .

T and U satisfy the coupled differential equations

dT

dt
= −a(T − Tr) +Q(t)

dU

dt
= −b(U − T )

where a and b are positive constants. Briefly explain the various terms appearing in the
above equations.

Heating may be provided by a short-lived pulse at t = 0, with Q(t) = Q1(t) = δ(t) or
by constant heating over a finite period 0 < t < τ , with Q(t) = Q2(t) = τ−1(H(t)−H(t−
τ)), where δ(t) and H(t) are respectively the Dirac delta function and the Heaviside step
function. Again briefly, explain how the given formulae for Q1(t) and Q2(t) are consistent
with their description and why the total heat supplied by the two heating protocols is the
same.

For t < 0, T = U = Tr. Find the solutions for T (t) and U(t) for t > 0, for each of
Q(t) = Q1(t) and Q(t) = Q2(t), denoted respectively by T1(t) and U1(t), and T2(t) and
U2(t). Explain clearly any assumptions that you make about continuity of the solutions
in time.

Show that the solutions T2(t) and U2(t) tend respectively to T1(t) and U1(t) in the
limit as τ → 0 and explain why.
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9F Probability

(a) Let Y and Z be independent discrete random variables taking values in sets S1 and
S2 respectively, and let F : S1 × S2 → R be a function.

Let E(z) = EF (Y, z). Show that

EE(Z) = EF (Y,Z) .

Let V (z) = E(F (Y, z)2)− (EF (Y, z))2. Show that

VarF (Y,Z) = EV (Z) + VarE(Z) .

(b) Let X1, . . . ,Xn be independent Bernoulli(p) random variables. For any function
F : {0, 1} → R, show that

VarF (X1) = p(1− p)(F (1) − F (0))2 .

Let {0, 1}n denote the set of all 0 -1 sequences of length n. By induction, or
otherwise, show that for any function F : {0, 1}n → R,

VarF (X) 6 p(1− p)

n
∑

i=1

E((F (X) − F (Xi))2)

where X = (X1, . . . ,Xn) and Xi = (X1, . . . ,Xi−1, 1−Xi,Xi+1, . . . ,Xn).

10F Probability

(a) Let X and Y be independent random variables taking values ±1, each with
probability 1

2
, and let Z = XY . Show that X, Y and Z are pairwise independent.

Are they independent?

(b) Let X and Y be discrete random variables with mean 0, variance 1, covariance ρ.
Show that Emax{X2, Y 2} 6 1 +

√

1− ρ2.

(c) Let X1,X2,X3 be discrete random variables. Writing aij = P(Xi > Xj), show that
min{a12, a23, a31} 6

2

3
.
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11F Probability

(a) Consider a Galton–Watson process (Xn). Prove that the extinction probability q is
the smallest non-negative solution of the equation q = F (q) where F (t) = E(tX1).
[You should prove any properties of Galton–Watson processes that you use.]

In the case of a Galton–Watson process with

P(X1 = 1) = 1/4, P(X1 = 3) = 3/4,

find the mean population size and compute the extinction probability.

(b) For each n ∈ N, let Yn be a random variable with distribution Poisson(n). Show
that

Yn − n√
n

→ Z

in distribution, where Z is a standard normal random variable.

Deduce that

lim
n→∞

e−n

n
∑

k=0

nk

k!
=

1

2
.

12F Probability
For a symmetric simple random walk (Xn) on Z starting at 0, let Mn = maxi6nXi.

(i) For m > 0 and x ∈ Z, show that

P(Mn > m,Xn = x) =

{

P(Xn = x) if x > m

P(Xn = 2m− x) if x < m.

(ii) For m > 0, show that P(Mn > m) = P(Xn = m) + 2
∑

x>m P(Xn = x) and that

P(Mn = m) = P(Xn = m) + P(Xn = m+ 1).

(iii) Prove that E(M2
n) < E(X2

n).

END OF PAPER

Part IA, Paper 2


