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SECTION I

1G Number Theory

Define the Legendre symbol

(

a

p

)

.

State Gauss’ lemma and use it to compute

(

2

p

)

where p is an odd prime.

Show that if m > 4 is a power of 2, and p is a prime dividing 2m + 1, then
p ≡ 1 (mod 4m).

2F Topics In Analysis
State Liouville’s theorem on the approximation of algebraic numbers by rationals.

Suppose that we have a sequence ζn with ζn ∈ {0, 1}. State and prove a necessary
and sufficient condition on the ζn for

∞
∑

n=0

ζn 10
−n!

to be transcendental.

3G Coding & Cryptography
Let C be a binary code of length n. Define the following decoding rules: (i) ideal

observer, (ii) maximum likelihood, (iii) minimum distance.

Let p denote the probability that a digit is mistransmitted and suppose p < 1/2.
Prove that maximum likelihood and minimum distance decoding agree.

Suppose codewords 000 and 111 are sent with probabilities 4/5 and 1/5 respectively
with error probability p = 1/4. If we receive 110, how should it be decoded according to
the three decoding rules above?

4H Automata and Formal Languages

(a) Prove that every regular language is also a context-free language (CFL).

(b) Show that, for any fixed n > 0, the set of regular expressions over the alphabet
{a1, . . . , an} is a CFL, but not a regular language.

Part II, Paper 1
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5J Statistical Modelling
The dataset ChickWeights records the weight of a group of chickens fed four

different diets at a range of time points. We perform the following regressions in R.

attach(ChickWeight)

fit1 = lm(weight~ Time+Diet)

fit2 = lm(log(weight)~ Time+Diet)

fit3 = lm(log(weight)~ Time+Diet+Time:Diet)

(i) Which hypothesis test does the following command perform? State the degrees of
freedom, and the conclusion of the test.

> anova(fit2,fit3)

Analysis of Variance Table

Model 1: log(weight) ~ Time + Diet

Model 2: log(weight) ~ Time + Diet + Time:Diet

Res.Df RSS Df Sum of Sq F Pr(>F)

1 574 34.381

2 571 31.589 3 2.7922 16.824 1.744e-10 ***

(ii) Define a diagnostic plot that might suggest the logarithmic transformation of the
response in fit2.

(iii) Define the dashed line in the following plot, generated with the command plot(fit3).
What does it tell us about the data point 579?
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6B Mathematical Biology
A model of insect dispersal and growth in one spatial dimension is given by

∂N

∂t
= D

∂

∂x

(

N2 ∂N

∂x

)

+ αN , N(x, 0) = N0δ(x),

where α, D and N0 are constants, D > 0, and α may be positive or negative.

By setting N(x, t) = R(x, τ) eαt, where τ(t) is some time-like variable satisfying
τ(0) = 0, show that a suitable choice of τ yields

Rτ = (R2Rx)x , R(x, 0) = N0 δ(x) ,

where subscript denotes differentiation with respect to x or τ .

Consider a similarity solution of the form R(x, τ) = F (ξ)/τ
1
4 where ξ = x/τ

1
4 . Show

that F must satisfy

−
1

4
(Fξ)′ = (F 2F ′)′ and

∫ +∞

−∞
F (ξ)dξ = N0 .

[You may use the fact that these are solved by

F (ξ) =

{

1
2

√

ξ20 − ξ2 for |ξ| < ξ0
0 otherwise

where ξ0 =
√

4N0/π.]

For α < 0, what is the maximum distance from the origin that insects ever reach?
Give your answer in terms of D, α and N0.

7E Further Complex Methods
Calculate the value of the integral

P

∫ ∞

−∞

e−ix

xn
dx ,

where P stands for Principal Value and n is a positive integer.
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8E Classical Dynamics
Consider a Lagrangian system with Lagrangian L(xA, ẋA, t), where A = 1, . . . , 3N ,

and constraints
fα(xA, t) = 0, α = 1, . . . , 3N − n .

Use the method of Lagrange multipliers to show that this is equivalent to a system
with Lagrangian L(qi, q̇i, t) ≡ L(xA(qi, t), ẋA(qi, q̇i, t), t), where i = 1, . . . , n, and qi are
coordinates on the surface of constraints.

Consider a bead of unit mass in R2 constrained to move (with no potential) on a
wire given by an equation y = f(x), where (x, y) are Cartesian coordinates. Show that
the Euler–Lagrange equations take the form

d

dt

∂L

∂ẋ
=
∂L

∂x

for some L = L(x, ẋ) which should be specified. Find one first integral of the Euler–
Lagrange equations, and thus show that

t = F (x),

where F (x) should be given in the form of an integral.

[Hint: You may assume that the Euler–Lagrange equations hold in all coordinate

systems.]

9C Cosmology
In a homogeneous and isotropic universe, describe the relative displacement r(t) of

two galaxies in terms of a scale factor a(t). Show how the relative velocity v(t) of these
galaxies is given by the relation v(t) = H(t)r(t), where you should specify H(t) in terms
of a(t).

From special relativity, the Doppler shift of light emitted by a particle moving away
radially with speed v can be approximated by

λ0
λe

=

√

1 + v/c

1− v/c
= 1 +

v

c
+O

(

v2

c2

)

,

where λe is the wavelength of emitted light and λ0 is the observed wavelength. For the
observed light from distant galaxies in a homogeneous and isotropic expanding universe,
show that the redshift defined by 1 + z ≡ λ0/λe is given by

1 + z =
a(t0)

a(te)
,

where te is the time of emission and t0 is the observation time.
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SECTION II

10G Coding & Cryptography
Let C be a binary linear code. Explain what it means for C to have length n and

rank k. Explain what it means for a codeword of C to have weight j.

Suppose C has length n, rank k, and Aj codewords of weight j. The weight
enumerator polynomial of C is given by

WC(s, t) =

n
∑

j=0

Ajs
jtn−j.

What is WC(1, 1)? Prove that WC(s, t) =WC(t, s) if and only if WC(1, 0) = 1.

Define the dual code C⊥ of C.

(i) Let y ∈ Fn
2 . Show that

∑

x∈C

(−1)x.y =

{

2k, if y ∈ C⊥,

0, otherwise.

(ii) Extend the definition of weight to give a weight w(y) for y ∈ Fn
2 . Suppose that for

t real and all x ∈ C

∑

y∈Fn

2

tw(y)(−1)x.y = (1− t)w(x)(1 + t)n−w(x).

For s real, by evaluating

∑

x∈C





∑

y∈Fn

2

(−1)x.y
(

s

t

)w(y)




in two different ways, show that

WC⊥(s, t) = 2−kWC(t− s, t+ s).
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11H Automata and Formal Languages

(a) Give an encoding to integers of all deterministic finite-state automata (DFAs). [Here
the alphabet of each such DFA is always taken from the set {0, 1, . . .}, and the states
for each such DFA are always taken from the set {q0, q1, . . .}.]

(b) Show that the set of codes for which the corresponding DFA Dn accepts a finite

language is recursive. Moreover, if the language L(Dn) is finite, show that we can
compute its size | L(Dn)| from n.

12J Statistical Modelling
The Cambridge Lawn Tennis Club organises a tournament in which every match

consists of 11 games, all of which are played. The player who wins 6 or more games is
declared the winner.

For players a and b, let nab be the total number of games they play against each
other, and let yab be the number of these games won by player a. Let ñab and ỹab be the
corresponding number of matches.

A statistician analysed the tournament data using a Binomial Generalised Linear
Model (GLM) with outcome yab. The probability Pab that a wins a game against b is
modelled by

log

(

Pab

1− Pab

)

= βa − βb , (∗)

with an appropriate corner point constraint. You are asked to re-analyse the data, but
the game-level results have been lost and you only know which player won each match.

We define a new GLM for the outcomes ỹab with P̃ab = Eỹab/ñab and g(P̃ab) =
βa − βb, where the βa are defined in (∗). That is, βa − βb is the log-odds that a wins a
game against b, not a match.

Derive the form of the new link function g. [You may express your answer in terms
of a cumulative distribution function.]
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13E Further Complex Methods
The Riemann zeta function is defined by

ζR(s) =
∞
∑

n=1

n−s

for Re(s) > 1.

Show that

ζR(s) =
1

Γ(s)

∫ ∞

0

ts−1

et − 1
dt.

Let I(s) be defined by

I(s) =
Γ(1− s)

2πi

∫

C

ts−1

e−t − 1
dt,

where C is the Hankel contour.

Show that I(s) provides an analytic continuation of ζR(s) for a range of s which
should be determined.

Hence evaluate ζR(−1).
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14C Cosmology
The evolution of a flat (k=0) homogeneous and isotropic universe with scale factor

a(t), mass density ρ(t) and pressure P (t) obeys the Friedmann and energy conservation
equations

H2(t) =

(

ȧ

a

)2

=
8πG

3
ρ+

Λc2

3
,

ρ̇ = −3
ȧ

a

(

ρ+ P/c2
)

,

where H(t) is the Hubble parameter (observed today t = t0 with value H0 = H(t0)) and
Λ > 0 is the cosmological constant.

Use these two equations to derive the acceleration equation

ä

a
= −

4πG

3

(

ρ+ 3P/c2
)

+
Λc2

3
.

For pressure-free matter (ρ = ρM and PM = 0), solve the energy conservation
equation to show that the Friedmann and acceleration equations can be re-expressed as

H = H0

√

ΩM

a3
+ΩΛ ,

ä

a
= −

H2
0

2

[

ΩM

a3
− 2ΩΛ

]

,

where we have taken a(t0) = 1 and we have defined the relative densities today (t = t0) as

ΩM =
8πG

3H2
0

ρM(t0) and ΩΛ =
Λc2

3H2
0

.

Solve the Friedmann equation and show that the scale factor can be expressed as

a(t) =

(

ΩM

ΩΛ

)1/3

sinh2/3
(

3
2

√

ΩΛH0 t
)

.

Find an expression for the time t̄ at which the matter density ρM and the effective density
caused by the cosmological constant Λ are equal. (You need not evaluate this explicitly.)
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15H Logic and Set Theory
State the Completeness Theorem for Propositional Logic.

[You do not need to give definitions of the various terms involved.]

State the Compactness Theorem and the Decidability Theorem, and deduce them
from the Completeness Theorem.

A set S of propositions is called finitary if there exists a finite set T of propositions
such that {t : S ⊢ t} = {t : T ⊢ t}. Give examples to show that an infinite set of
propositions may or may not be finitary.

Now let A and B be sets of propositions such that every valuation is a model of
exactly one of A and B. Show that there exist finite subsets A′ of A and B′ of B with
A′ ∪B′ |= ⊥, and deduce that A and B are finitary.

16H Graph Theory
Let G be a graph of order n > 3 satisfying δ(G) > n

2 . Show that G is Hamiltonian.

Give an example of a planar graph G, with χ(G) = 4, that is Hamiltonian, and also
an example of a planar graph G, with χ(G) = 4, that is not Hamiltonian.

Let G be a planar graph with the property that the boundary of the unbounded
face is a Hamilton cycle of G. Prove that χ(G) 6 3.

17I Galois Theory

(a) Let K be a field and let f(t) ∈ K[t]. What does it mean for a field extension L of
K to be a splitting field for f(t) over K?

Show that the splitting field for f(t) over K is unique up to isomorphism.

(b) Find the Galois groups over the rationals Q for the following polynomials:

(i) t4 + 2t+ 2.

(ii) t5 − t− 1.

Part II, Paper 1
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18G Representation Theory

(a) Prove that if there exists a faithful irreducible complex representation of a finite
group G, then the centre Z(G) is cyclic.

(b) Define the permutations a, b, c ∈ S6 by

a = (1 2 3), b = (4 5 6), c = (2 3)(4 5),

and let E = 〈a, b, c〉.

(i) Using the relations a3 = b3 = c2 = 1, ab = ba, c−1ac = a−1 and c−1bc = b−1,
prove that E has order 18.

(ii) Suppose that ε and η are complex cube roots of unity. Prove that there is a
(matrix) representation ρ of E over C such that

a 7→

(

ε 0
0 ε−1

)

, b 7→

(

η 0
0 η−1

)

, c 7→

(

0 1
1 0

)

.

(iii) For which values of ε, η is ρ faithful? For which values of ε, η is ρ irreducible?

(c) Note that 〈a, b〉 is a normal subgroup of E which is isomorphic to C3 × C3. By
inducing linear characters of this subgroup, or otherwise, obtain the character table
of E.

Deduce that E has the property that Z(E) is cyclic but E has no faithful irreducible
representation over C.

19H Number Fields
Let OL be the ring of integers in a number field L, and let a 6 OL be a non-zero

ideal of OL.

(a) Show that a ∩ Z 6= {0}.

(b) Show that OL/a is a finite abelian group.

(c) Show that if x ∈ L has xa ⊆ a, then x ∈ OL.

(d) Suppose [L : Q] = 2, and a = 〈b, α〉, with b ∈ Z and α ∈ OL. Show that 〈b, α〉〈b, α〉
is principal.

[You may assume that a has an integral basis.]
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20I Algebraic Topology
Let X be a topological space and let x0 and x1 be points of X.

(a) Explain how a path u : [0, 1] → X from x0 to x1 defines a map u# : π1(X,x0) →
π1(X,x1).

(b) Prove that u# is an isomorphism of groups.

(c) Let α, β : (S1, 1) → (X,x0) be based loops in X. Suppose that α, β are homotopic
as unbased maps, i.e. the homotopy is not assumed to respect basepoints. Show
that the corresponding elements of π1(X,x0) are conjugate.

(d) Take X to be the 2-torus S1×S1. If α, β are homotopic as unbased loops as in part
(c), then exhibit a based homotopy between them. Interpret this fact algebraically.

(e) Exhibit a pair of elements in the fundamental group of S1∨S1 which are homotopic
as unbased loops but not as based loops. Justify your answer.

21F Linear Analysis
Let X be a normed vector space over the real numbers.

(a) Define the dual space X∗ of X and prove that X∗ is a Banach space. [You may use
without proof that X∗ is a vector space.]

(b) The Hahn–Banach theorem states the following. Let X be a real vector space, and
let p : X → R be sublinear, i.e., p(x + y) 6 p(x) + p(y) and p(λx) = λp(x) for all
x, y ∈ X and all λ > 0. Let Y ⊂ X be a linear subspace, and let g : Y → R be
linear and satisfy g(y) 6 p(y) for all y ∈ Y . Then there exists a linear functional
f : X → R such that f(x) 6 p(x) for all x ∈ X and f |Y = g.

Using the Hahn–Banach theorem, prove that for any non-zero x0 ∈ X there exists
f ∈ X∗ such that f(x0) = ‖x0‖ and ‖f‖ = 1.

(c) Show that X can be embedded isometrically into a Banach space, i.e. find a Banach
space Y and a linear map Φ : X → Y with ‖Φ(x)‖ = ‖x‖ for all x ∈ X.

Part II, Paper 1
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22F Analysis of Functions
Consider a sequence fn : R → R of measurable functions converging pointwise to a

function f : R → R. The Lebesgue measure is denoted by λ.

(a) Consider a Borel set A ⊂ R with finite Lebesgue measure λ(A) < +∞. Define for
k, n > 1 the sets

E(k)
n :=

⋂

m>n

{

x ∈ A
∣

∣

∣
|fm(x)− f(x)| 6

1

k

}

.

Prove that for any k, n > 1, one has E
(k)
n ⊂ E

(k)
n+1 and E

(k+1)
n ⊂ E

(k)
n . Prove that

for any k > 1, A = ∪n>1E
(k)
n .

(b) Consider a Borel set A ⊂ R with finite Lebesgue measure λ(A) < +∞. Prove that
for any ε > 0, there is a Borel set Aε ⊂ A for which λ(A \ Aε) 6 ε and such
that fn converges to f uniformly on Aε as n → +∞. Is the latter still true when
λ(A) = +∞?

(c) Assume additionally that fn ∈ Lp(R) for some p ∈ (1,+∞], and there exists an
M > 0 for which ‖fn‖Lp(R) 6M for all n > 1. Prove that f ∈ Lp(R).

(d) Let fn and f be as in part (c). Consider a Borel set A ⊂ R with finite Lebesgue
measure λ(A) < +∞. Prove that fn, f are integrable on A and

∫

A fn dλ→
∫

A f dλ
as n → ∞. Deduce that fn converges weakly to f in Lp(R) when p < +∞. Does
the convergence have to be strong?

23F Riemann Surfaces
By considering the singularity at ∞, show that any injective analytic map f : C → C

has the form f(z) = az + b for some a ∈ C∗ and b ∈ C.

State the Riemann–Hurwitz formula for a non-constant analytic map f : R→ S of
compact Riemann surfaces R and S, explaining each term that appears.

Suppose f : C∞ → C∞ is analytic of degree 2. Show that there exist Möbius
transformations S and T such that

SfT : C∞ → C∞

is the map given by z 7→ z2.
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24I Algebraic Geometry
Let k be an algebraically closed field.

(a) Let X and Y be varieties defined over k. Given a function f : X → Y , define what
it means for f to be a morphism of varieties.

(b) If X is an affine variety, show that the coordinate ring A(X) coincides with the
ring of regular functions on X. [Hint: You may assume a form of the Hilbert

Nullstellensatz.]

(c) Now suppose X and Y are affine varieties. Show that if X and Y are isomorphic,
then there is an isomorphism of k-algebras A(X) ∼= A(Y ).

(d) Show that Z(x2 − y3) ⊆ A2 is not isomorphic to A1.

25I Differential Geometry
Define what it means for a subset X ⊂ RN to be a manifold.

For manifolds X and Y , state what it means for a map f : X → Y to be smooth.
For such a smooth map, and x ∈ X, define the differential map dfx.

What does it mean for y ∈ Y to be a regular value of f? Give an example of a map
f : X → Y and a y ∈ Y which is not a regular value of f .

Show that the set SLn(R) of n × n real-valued matrices with determinant 1 can
naturally be viewed as a manifold SLn(R) ⊂ Rn2

. What is its dimension? Show that
matrix multiplication f : SLn(R) × SLn(R) → SLn(R), defined by f(A,B) = AB, is
smooth. [Standard theorems may be used without proof if carefully stated.] Describe the
tangent space of SLn(R) at the identity I ∈ SLn(R) as a subspace of Rn2

.

Show that if n > 2 then the set of real-valued matrices with determinant 0, viewed
as a subset of Rn2

, is not a manifold.
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26J Probability and Measure

(a) Give the definition of the Borel σ-algebra on R and a Borel function f : E → R where
(E, E) is a measurable space.

(b) Suppose that (fn) is a sequence of Borel functions which converges pointwise to a
function f . Prove that f is a Borel function.

(c) Let Rn : [0, 1) → R be the function which gives the nth binary digit of a number in
[0, 1) (where we do not allow for the possibility of an infinite sequence of 1s). Prove
that Rn is a Borel function.

(d) Let f : [0, 1)2 → [0,∞] be the function such that f(x, y) for x, y ∈ [0, 1)2 is equal to
the number of digits in the binary expansions of x, y which disagree. Prove that f is
non-negative measurable.

(e) Compute the Lebesgue measure of f−1([0,∞)), i.e. the set of pairs of numbers in [0, 1)
whose binary expansions disagree in a finite number of digits.

27K Applied Probability

(a) Define a continuous time Markov chain X with infinitesimal generator Q and jump
chain Y .

(b) Let i be a transient state of a continuous-time Markov chain X with X(0) = i.
Show that the time spent in state i has an exponential distribution and explicitly
state its parameter.

[You may use the fact that if S ∼ Exp(λ), then E
[

eθS
]

= λ/(λ− θ) for θ < λ.]

(c) Let X be an asymmetric random walk in continuous time on the non-negative
integers with reflection at 0, so that

qi,j =

{

λ if j = i+ 1, i > 0,

µ if j = i− 1, i > 1.

Suppose that X(0) = 0 and λ > µ. Show that for all r > 1, the total time Tr spent
in state r is exponentially distributed with parameter λ− µ.

Assume now that X(0) has some general distribution with probability generating
function G. Find the expected amount of time spent at 0 in terms of G.
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28K Principles of Statistics
For a positive integer n, we want to estimate the parameter p in the binomial

statistical model {Bin(n, p), p ∈ [0, 1]}, based on an observation X ∼ Bin(n, p).

(a) Compute the maximum likelihood estimator for p. Show that the posterior
distribution for p under a uniform prior on [0, 1] is Beta(a, b), and specify a and b.

[The p.d.f. of Beta(a, b) is given by

fa,b(p) =
(a+ b− 1)!

(a− 1)!(b − 1)!
pa−1(1− p)b−1 . ]

(b) (i) For a risk function L, define the risk of an estimator p̂ of p, and the Bayes

risk under a prior π for p.

(ii) Under the loss function

L(p̂, p) =
(p̂− p)2

p(1− p)
,

find a Bayes optimal estimator for the uniform prior. Give its risk as a function
of p.

(iii) Give a minimax optimal estimator for the loss function L given above. Justify
your answer.

29J Stochastic Financial Models

(a) What does it mean to say that (Xn,Fn)n>0 is a martingale?

(b) Let ∆0,∆1, . . . be independent random variables on (Ω,F ,P) with E
[

|∆i|
]

< ∞
and E[∆i] = 0, i > 0. Further, let

X0 = ∆0 and Xn+1 = Xn +∆n+1 fn(X0, . . . ,Xn), n > 0,

where

fn(x0, . . . , xn) =
1

n+ 1

n
∑

i=0

xi .

Show that (Xn)n>0 is a martingale with respect to the natural filtration Fn =
σ(X0, . . . ,Xn).

(c) State and prove the optional stopping theorem for a bounded stopping time τ .

Part II, Paper 1



17

30A Dynamical Systems
Consider the dynamical system

ẋ = −x+ x3 + βxy2 ,

ẏ = −y + βx2y + y3 ,

where β > −1 is a constant.

(a) Find the fixed points of the system, and classify them for β 6= 1.

Sketch the phase plane for each of the cases (i) β = 1
2 (ii) β = 2 and (iii) β = 1.

(b) Given β > 2, show that the domain of stability of the origin includes the union over
k ∈ R of the regions

x2 + k2y2 <
4k2(1 + k2)(β − 1)

β2(1 + k2)2 − 4k2
.

By considering k ≫ 1, or otherwise, show that more information is obtained from
the union over k than considering only the case k = 1.

[

Hint: If B > A,C then max
u∈[0,1]

{

Au2 + 2Bu(1− u) + C(1− u)2
}

=
B2 −AC

2B −A− C
.
]

31A Integrable Systems
Define a Lie point symmetry of the first order ordinary differential equation ∆[t,x, ẋ] =

0. Describe such a Lie point symmetry in terms of the vector field that generates it.

Consider the 2n-dimensional Hamiltonian system (M,H) governed by the differen-
tial equation

dx

dt
= J

∂H

∂x
. (⋆)

Define the Poisson bracket {·, ·}. For smooth functions f, g : M → R show that the
associated Hamiltonian vector fields Vf , Vg satisfy

[Vf , Vg] = −V{f,g}.

If F : M → R is a first integral of (M,H), show that the Hamiltonian vector field
VF generates a Lie point symmetry of (⋆). Prove the converse is also true if (⋆) has a fixed
point, i.e. a solution of the form x(t) = x0.
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32C Principles of Quantum Mechanics
The position and momentum operators of the harmonic oscillator can be written as

x̂ =

(

~

2mω

)1/2

(a+ a†), p̂ =

(

~mω

2

)1/2

i(a† − a),

where m is the mass, ω is the frequency and the Hamiltonian is

H =
1

2m
p̂2 +

1

2
mω2x̂2.

Assuming that
[x̂, p̂] = i~

derive the commutation relations for a and a†. Construct the Hamiltonian in terms of
a and a†. Assuming that there is a unique ground state, explain how all other energy
eigenstates can be constructed from it. Determine the energy of each of these eigenstates.

Consider the modified Hamiltonian

H ′ = H + λ~ω (a2 + a† 2),

where λ is a dimensionless parameter. Use perturbation theory to calculate the modified
energy levels to second order in λ, quoting any standard formulae that you require. Show
that the modified Hamiltonian can be written as

H ′ =
1

2m
(1− 2λ)p̂2 +

1

2
mω2(1 + 2λ)x̂2 .

Assuming |λ| < 1
2 , calculate the modified energies exactly. Show that the results are

compatible with those obtained from perturbation theory.
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33C Applications of Quantum Mechanics
A one-dimensional lattice has N sites with lattice spacing a. In the tight-binding

approximation, the Hamiltonian describing a single electron is given by

H = E0

∑

n

|n〉〈n| − J
∑

n

(

|n〉〈n + 1|+ |n+ 1〉〈n|
)

,

where |n〉 is the normalised state of the electron localised on the nth lattice site. Using
periodic boundary conditions |N +1〉 ≡ |1〉, solve for the spectrum of this Hamiltonian to
derive the dispersion relation

E(k) = E0 − 2J cos(ka) .

Define the Brillouin zone. Determine the number of states in the Brillouin zone.

Calculate the velocity v and effective mass m⋆ of the particle. For which values of
k is the effective mass negative?

In the semi-classical approximation, derive an expression for the time-dependence
of the position of the electron in a constant electric field.

Describe how the concepts of metals and insulators arise in the model above.
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34D Statistical Physics
Explain what is meant by the microcanonical ensemble for a quantum system.

Sketch how to derive the probability distribution for the canonical ensemble from the
microcanonical ensemble. Under what physical conditions should each type of ensemble
be used?

A paramagnetic solid contains atoms with magnetic moment µ = µBJ, where µB is
a positive constant and J is the intrinsic angular momentum of the atom. In an applied
magnetic field B, the energy of an atom is −µ ·B. Consider B = (0, 0, B). Each atom has
total angular momentum J ∈ Z, so the possible values of Jz = m ∈ Z are −J 6 m 6 J .

Show that the partition function for a single atom is

Z1(T,B) =
sinh

(

x(J + 1
2)
)

sinh (x/2)
,

where x = µBB/kT .

Compute the average magnetic moment 〈µz〉 of the atom. Sketch 〈µz〉/J for J = 1,
J = 2 and J = 3 on the same graph.

The total magnetization is Mz = N〈µz〉, where N is the number of atoms. The
magnetic susceptibility is defined by

χ =

(

∂Mz

∂B

)

T

.

Show that the solid obeys Curie’s law at high temperatures. Compute the susceptibility
at low temperatures and give a physical explanation for the result.
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35D Electrodynamics
In some inertial reference frame S, there is a uniform electric field E directed along

the positive y-direction and a uniform magnetic field B directed along the positive z-
direction. The magnitudes of the fields are E and B, respectively, with E < cB. Show that
it is possible to find a reference frame in which the electric field vanishes, and determine
the relative speed βc of the two frames and the magnitude of the magnetic field in the
new frame.
[Hint: You may assume that under a standard Lorentz boost with speed v = βc along the

x-direction, the electric and magnetic field components transform as





E′
x

E′
y

E′
z



 =





Ex

γ(β)(Ey − vBz)
γ(β)(Ez + vBy)



 and





B′
x

B′
y

B′
z



 =





Bx

γ(β)(By + vEz/c
2)

γ(β)(Bz − vEy/c
2)



 ,

where the Lorentz factor γ(β) = (1− β2)−1/2.]

A point particle of mass m and charge q moves relativistically under the influence
of the fields E and B. The motion is in the plane z = 0. By considering the motion in
the reference frame in which the electric field vanishes, or otherwise, show that, with a
suitable choice of origin, the worldline of the particle has components in the frame S of
the form

ct(τ) = γ(u/c)γ(β)

[

cτ +
βu

ω
sinωτ

]

,

x(τ) = γ(u/c)γ(β)
[

βcτ +
u

ω
sinωτ

]

,

y(τ) =
uγ(u/c)

ω
cosωτ .

Here, u is a constant speed with Lorentz factor γ(u/c), τ is the particle’s proper time, and
ω is a frequency that you should determine.

Using dimensionless coordinates,

x̃ =
ω

uγ(u/c)
x and ỹ =

ω

uγ(u/c)
y ,

sketch the trajectory of the particle in the (x̃, ỹ)-plane in the limiting cases 2πβ ≪ u/c
and 2πβ ≫ u/c.
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36D General Relativity
A static black hole in a five-dimensional spacetime is described by the metric

ds2 = −
(

1−
µ

r2

)

dt2 +
(

1−
µ

r2

)−1
dr2 + r2[dψ2 + sin2 ψ (dθ2 + sin2 θ dφ2)] ,

where µ > 0 is a constant.

A geodesic lies in the plane θ = ψ = π/2 and has affine parameter λ. Show that

E =
(

1−
µ

r2

) dt

dλ
and L = r2

dφ

dλ

are both constants of motion. Write down a third constant of motion.

Show that timelike and null geodesics satisfy the equation

1

2

(

dr

dλ

)2

+ V (r) =
1

2
E2

for some potential V (r) which you should determine.

Circular geodesics satisfy the equation V ′(r) = 0. Calculate the values of r for
which circular null geodesics exist and for which circular timelike geodesics exist. Which
are stable and which are unstable? Briefly describe how this compares to circular geodesics
in the four-dimensional Schwarzschild geometry.
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37B Fluid Dynamics II
Fluid of density ρ and dynamic viscosity µ occupies the region y > 0 in Cartesian

coordinates (x, y, z). A semi-infinite, dense array of cilia occupy the half plane y = 0,
x > 0 and apply a stress in the x-direction on the adjacent fluid, working at a constant
and uniform rate ρP per unit area, which causes the fluid to move with steady velocity
u = (u(x, y), v(x, y), 0). Give a careful physical explanation of the boundary condition

u
∂u

∂y

∣

∣

∣

y=0
= −

P

ν
for x > 0,

paying particular attention to signs, where ν is the kinematic viscosity of the fluid. Why
would you expect the fluid motion to be confined to a thin region near y = 0 for sufficiently
large values of x?

Write down the viscous-boundary-layer equations governing the thin region of fluid
motion. Show that the flow can be approximated by a stream function

ψ(x, y) = U(x)δ(x)f(η), where η =
y

δ(x)
.

Determine the functions U(x) and δ(x). Show that the dimensionless function f(η) satisfies

f ′′′ = 1
5f

′2 − 3
5ff

′′.

What boundary conditions must be satisfied by f(η)? By considering how the volume flux
varies with downstream location x, or otherwise, determine (with justification) the sign of
the transverse flow v.
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38B Waves
Derive the wave equation governing the pressure disturbance p̃, for linearised,

constant entropy sound waves in a compressible inviscid fluid of density ρ0 and sound
speed c0, which is otherwise at rest.

Consider a harmonic acoustic plane wave with wavevector kI = kI(sin θ, cos θ, 0)
and unit-amplitude pressure disturbance. Determine the resulting velocity field u.

Consider such an acoustic wave incident from y < 0 on a thin elastic plate at y = 0.
The regions y < 0 and y > 0 are occupied by gases with densities ρ1 and ρ2, respectively,
and sound speeds c1 and c2, respectively. The kinematic boundary conditions at the
plate are those appropriate for an inviscid fluid, and the (linearised) dynamic boundary
condition is

m
∂2η

∂t2
+B

∂4η

∂x4
+ [p̃(x, 0, t)]+− = 0 ,

wherem andB are the mass and bending moment per unit area of the plate, and y = η(x, t)
(with |kIη| ≪ 1) is its perturbed position. Find the amplitudes of the reflected and
transmitted pressure perturbations, expressing your answers in terms of the dimensionless
parameter

β =
kI cos θ(mc

2
1 −Bk2I sin

4 θ)

ρ1c21
.

(i) If ρ1 = ρ2 = ρ0 and c1 = c2 = c0, under what condition is the incident wave perfectly
transmitted?

(ii) If ρ1c1 ≫ ρ2c2, comment on the reflection coefficient, and show that waves incident
at a sufficiently large angle are reflected as if from a pressure-release surface (i.e. an
interface where p̃ = 0), no matter how large the plate mass and bending moment
may be.

39A Numerical Analysis
State the Householder–John theorem and explain how it can be used in designing

iterative methods for solving a system of linear equations Ax = b. [You may quote other
relevant theorems if needed.]

Consider the following iterative scheme for solving Ax = b. Let A = L + D + U ,
where D is the diagonal part of A, and L and U are the strictly lower and upper triangular
parts of A, respectively. Then, with some starting vector x(0), the scheme is as follows:

(D + ωL)x(k+1) =
[

(1− ω)D − ωU
]

x(k) + ωb .

Prove that if A is a symmetric positive definite matrix and ω ∈ (0, 2), then, for any x(0),
the above iteration converges to the solution of the system Ax = b.

Which method corresponds to the case ω = 1?
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