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SECTION I

1A Vectors and Matrices
Consider z ∈ C with |z| = 1 and arg z = θ, where θ ∈ [ 0, π).

(a) Prove algebraically that the modulus of 1+ z is 2 cos 1

2
θ and that the argument is 1

2
θ.

Obtain these results geometrically using the Argand diagram.

(b) Obtain corresponding results algebraically and geometrically for 1− z.

2C Vectors and Matrices
Let A and B be real n× n matrices.

Show that (AB)T = BTAT .

For any square matrix, the matrix exponential is defined by the series

eA = I +

∞
∑

k=1

Ak

k!
.

Show that (eA)T = eA
T

. [You are not required to consider issues of convergence.]

Calculate, in terms of A and AT , the matrices Q0, Q1 and Q2 in the series for the
matrix product

etA etA
T

=
∞
∑

k=0

Qkt
k , where t ∈ R.

Hence obtain a relation between A and AT which necessarily holds if etA is an orthogonal
matrix.

3F Analysis I
Given an increasing sequence of non-negative real numbers (an)

∞
n=1, let

sn =
1

n

n
∑

k=1

ak.

Prove that if sn → x as n → ∞ for some x ∈ R then also an → x as n → ∞.

Part IA, Paper 1



3

4E Analysis I
Show that if the power series

∑∞
n=0 anz

n (z ∈ C) converges for some fixed z = z0,
then it converges absolutely for every z satisfying |z| < |z0|.

Define the radius of convergence of a power series.

Give an example of v ∈ C and an example of w ∈ C such that |v| = |w| = 1,

∞
∑

n=1

vn

n

converges and
∞
∑

n=1

wn

n
diverges. [You may assume results about standard series without

proof.] Use this to find the radius of convergence of the power series

∞
∑

n=1

zn

n
.
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SECTION II

5A Vectors and Matrices

(a) Define the vector product x × y of the vectors x and y in R
3. Use suffix notation to

prove that
x× (x× y) = x (x · y)− y (x · x).

(b) The vectors xn+1 (n = 0, 1, 2, . . . ) are defined by xn+1 = λa×xn, where a and x0 are
fixed vectors with |a| = 1 and a× x0 6= 0, and λ is a positive constant.

(i) Write x2 as a linear combination of a and x0. Further, for n > 1, express xn+2

in terms of λ and xn. Show, for n > 1, that |xn| = λn |a× x0|.

(ii) Let Xn be the point with position vector xn (n = 0, 1, 2, . . . ). Show that
X1,X2, . . . lie on a pair of straight lines.

(iii) Show that the line segment XnXn+1 (n > 1) is perpendicular to Xn+1Xn+2.
Deduce that XnXn+1 is parallel to Xn+2Xn+3.

Show that xn → 0 as n → ∞ if λ < 1, and give a sketch to illustrate the case
λ = 1.

(iv) The straight line through the points Xn+1 and Xn+2 makes an angle θ with the
straight line through the points Xn and Xn+3. Find cos θ in terms of λ.
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6B Vectors and Matrices

(a) Show that the eigenvalues of any real n × n square matrix A are the same as the
eigenvalues of AT .

The eigenvalues of A are λ1, λ2, . . ., λn and the eigenvalues of ATA are µ1, µ2, . . .,
µn. Determine, by means of a proof or a counterexample, whether the following are
necessary valid:

(i)
n
∑

i=1

µi =
n
∑

i=1

λ2
i
;

(ii)
n
∏

i=1

µi =
n
∏

i=1

λ2
i
.

(b) The 3× 3 matrix B is given by

B = I +mnT ,

where m and n are orthogonal real unit vectors and I is the 3× 3 identity matrix.

(i) Show that m × n is an eigenvector of B, and write down a linearly independent
eigenvector. Find the eigenvalues of B and determine whether B is diagonalisable.

(ii) Find the eigenvectors and eigenvalues of BTB.

7B Vectors and Matrices

(a) Show that a square matrix A is anti-symmetric if and only if xTAx = 0 for every
vector x.

(b) Let A be a real anti-symmetric n × n matrix. Show that the eigenvalues of A are
imaginary or zero, and that the eigenvectors corresponding to distinct eigenvalues
are orthogonal (in the sense that x†y = 0, where the dagger denotes the hermitian
conjugate).

(c) Let A be a non-zero real 3 × 3 anti-symmetric matrix. Show that there is a real
non-zero vector a such that Aa = 0.

Now let b be a real vector orthogonal to a. Show that A2b = −θ2b for some real
number θ.

The matrix eA is defined by the exponential series I + A + 1
2!
A2 + · · · . Express eAa

and eAb in terms of a,b, Ab and θ.

[You are not required to consider issues of convergence.]
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8C Vectors and Matrices

(a) Given y ∈ R
3 consider the linear transformation T which maps

x 7→ Tx = (x · e1) e1 + x× y .

Express T as a matrix with respect to the standard basis e1, e2, e3 , and determine
the rank and the dimension of the kernel of T for the cases (i) y = c1e1 , where c1 is
a fixed number, and (ii) y · e1 = 0 .

(b) Given that the equation
AB x = d ,

where

A =





1 1 0
0 2 3
0 1 2



 , B =





1 4 1
−3 −2 1
1 −1 −1



 and d =





1
1
k



 ,

has a solution, show that 4k = 1.

9D Analysis I

(a) State the Intermediate Value Theorem.

(b) Define what it means for a function f : R → R to be differentiable at a point a ∈ R. If
f is differentiable everywhere on R, must f ′ be continuous everywhere? Justify your
answer.

State the Mean Value Theorem.

(c) Let f : R → R be differentiable everywhere. Let a, b ∈ R with a < b.
If f ′(a) 6 y 6 f ′(b), prove that there exists c ∈ [a, b] such that f ′(c) = y. [Hint:
consider the function g defined by

g(x) =
f(x)− f(a)

x− a

if x 6= a and g(a) = f ′(a). ]

If additionally f(a) 6 0 6 f(b), deduce that there exists d ∈ [a, b] such that
f ′(d) + f(d) = y.
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10D Analysis I
Let a, b ∈ R with a < b and let f : (a, b) → R.

(a) Define what it means for f to be continuous at y0 ∈ (a, b).

f is said to have a local minimum at c ∈ (a, b) if there is some ε > 0 such that
f(c) 6 f(x) whenever x ∈ (a, b) and |x− c| < ε.

If f has a local minimum at c ∈ (a, b) and f is differentiable at c, show that f ′(c) = 0.

(b) f is said to be convex if

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y)

for every x, y ∈ (a, b) and λ ∈ [0, 1]. If f is convex, r ∈ R and
[

y0−|r| , y0+|r|
]

⊂ (a, b),
prove that

(1 + λ)f(y0)− λf(y0 − r) 6 f(y0 + λr) 6 (1− λ)f(y0) + λf(y0 + r)

for every λ ∈ [0, 1].

Deduce that if f is convex then f is continuous.

If f is convex and has a local minimum at c ∈ (a, b), prove that f has a global minimum
at c, i.e., that f(x) > f(c) for every x ∈ (a, b). [Hint: argue by contradiction.] Must
f be differentiable at c? Justify your answer.

11F Analysis I

(a) Let (xn)
∞
n=1 be a non-negative and decreasing sequence of real numbers. Prove that

∑∞
n=1 xn converges if and only if

∑∞
k=0 2

kx2k converges.

(b) For s ∈ R, prove that
∑∞

n=1 n
−s converges if and only if s > 1.

(c) For any k ∈ N, prove that
lim
n→∞

2−nnk = 0.

(d) The sequence (an)
∞
n=0 is defined by a0 = 1 and an+1 = 2an for n > 0. For any k ∈ N,

prove that

lim
n→∞

2n
k

an
= 0.
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12E Analysis I
Let f : [a, b] → R be a bounded function defined on the closed, bounded interval

[a, b] of R. Suppose that for every ε > 0 there is a dissection D of [a, b] such that
SD(f)− sD(f) < ε, where sD(f) and SD(f) denote the lower and upper Riemann sums of
f for the dissection D. Deduce that f is Riemann integrable. [You may assume without
proof that sD(f) 6 SD′(f) for all dissections D and D′ of [a, b].]

Prove that if f : [a, b] → R is continuous, then f is Riemann integrable.

Let g : (0, 1] → R be a bounded continuous function. Show that for any λ ∈ R, the
function f : [0, 1] → R defined by

f(x) =

{

g(x) if 0 < x 6 1 ,

λ if x = 0 ,

is Riemann integrable.

Let f : [a, b] → R be a differentiable function with one-sided derivatives at the
endpoints. Suppose that the derivative f ′ is (bounded and) Riemann integrable. Show
that

∫

b

a

f ′(x) dx = f(b)− f(a) .

[You may use the Mean Value Theorem without proof.]

END OF PAPER
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