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Paper 1, Section I

3F Analysis I
Given an increasing sequence of non-negative real numbers (an)

∞
n=1, let

sn =
1

n

n∑

k=1

ak.

Prove that if sn → x as n→ ∞ for some x ∈ R then also an → x as n→ ∞.

Paper 1, Section II

11F Analysis I

(a) Let (xn)
∞
n=1 be a non-negative and decreasing sequence of real numbers. Prove that∑∞

n=1 xn converges if and only if
∑∞

k=0 2
kx2k converges.

(b) For s ∈ R, prove that
∑∞

n=1 n
−s converges if and only if s > 1.

(c) For any k ∈ N, prove that
lim
n→∞

2−nnk = 0.

(d) The sequence (an)
∞
n=0 is defined by a0 = 1 and an+1 = 2an for n > 0. For any k ∈ N,

prove that

lim
n→∞

2n
k

an
= 0.
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Paper 1, Section I

4E Analysis I
Show that if the power series

∑∞
n=0 anz

n (z ∈ C) converges for some fixed z = z0,
then it converges absolutely for every z satisfying |z| < |z0|.

Define the radius of convergence of a power series.

Give an example of v ∈ C and an example of w ∈ C such that |v| = |w| = 1,

∞∑

n=1

vn

n

converges and
∞∑

n=1

wn

n
diverges. [You may assume results about standard series without

proof.] Use this to find the radius of convergence of the power series

∞∑

n=1

zn

n
.

Paper 1, Section II

9D Analysis I

(a) State the Intermediate Value Theorem.

(b) Define what it means for a function f : R → R to be differentiable at a point a ∈ R. If
f is differentiable everywhere on R, must f ′ be continuous everywhere? Justify your
answer.

State the Mean Value Theorem.

(c) Let f : R → R be differentiable everywhere. Let a, b ∈ R with a < b.
If f ′(a) 6 y 6 f ′(b), prove that there exists c ∈ [a, b] such that f ′(c) = y. [Hint:
consider the function g defined by

g(x) =
f(x)− f(a)

x− a

if x 6= a and g(a) = f ′(a). ]

If additionally f(a) 6 0 6 f(b), deduce that there exists d ∈ [a, b] such that
f ′(d) + f(d) = y.
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Paper 1, Section II

10D Analysis I
Let a, b ∈ R with a < b and let f : (a, b) → R.

(a) Define what it means for f to be continuous at y0 ∈ (a, b).

f is said to have a local minimum at c ∈ (a, b) if there is some ε > 0 such that
f(c) 6 f(x) whenever x ∈ (a, b) and |x− c| < ε.

If f has a local minimum at c ∈ (a, b) and f is differentiable at c, show that f ′(c) = 0.

(b) f is said to be convex if

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y)

for every x, y ∈ (a, b) and λ ∈ [0, 1]. If f is convex, r ∈ R and
[
y0−|r| , y0+|r|

]
⊂ (a, b),

prove that

(1 + λ)f(y0)− λf(y0 − r) 6 f(y0 + λr) 6 (1− λ)f(y0) + λf(y0 + r)

for every λ ∈ [0, 1].

Deduce that if f is convex then f is continuous.

If f is convex and has a local minimum at c ∈ (a, b), prove that f has a global minimum
at c, i.e., that f(x) > f(c) for every x ∈ (a, b). [Hint: argue by contradiction.] Must
f be differentiable at c? Justify your answer.
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Paper 1, Section II

12E Analysis I
Let f : [a, b] → R be a bounded function defined on the closed, bounded interval

[a, b] of R. Suppose that for every ε > 0 there is a dissection D of [a, b] such that
SD(f)− sD(f) < ε, where sD(f) and SD(f) denote the lower and upper Riemann sums of
f for the dissection D. Deduce that f is Riemann integrable. [You may assume without
proof that sD(f) 6 SD′(f) for all dissections D and D′ of [a, b].]

Prove that if f : [a, b] → R is continuous, then f is Riemann integrable.

Let g : (0, 1] → R be a bounded continuous function. Show that for any λ ∈ R, the
function f : [0, 1] → R defined by

f(x) =

{
g(x) if 0 < x 6 1 ,

λ if x = 0 ,

is Riemann integrable.

Let f : [a, b] → R be a differentiable function with one-sided derivatives at the
endpoints. Suppose that the derivative f ′ is (bounded and) Riemann integrable. Show
that ∫ b

a

f ′(x) dx = f(b)− f(a) .

[You may use the Mean Value Theorem without proof.]
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Paper 2, Section I

1C Differential Equations

(a) The numbers z1, z2, . . . satisfy

zn+1 = zn + cn (n > 1),

where c1, c2, . . . are given constants. Find zn+1 in terms of c1, c2, . . . , cn and z1.

(b) The numbers x1, x2, . . . satisfy

xn+1 = anxn + bn (n > 1),

where a1, a2, . . . are given non-zero constants and b1, b2, . . . are given constants. Let
z1 = x1 and zn+1 = xn+1/Un, where Un = a1a2 · · · an . Calculate zn+1−zn , and hence
find xn+1 in terms of x1, b1, . . . , bn and U1, . . . , Un.

Paper 2, Section I

2C Differential Equations
Consider the function

f(x, y) =
x

y
+
y

x
− (x− y)2

a2

defined for x > 0 and y > 0, where a is a non-zero real constant. Show that (λ, λ ) is a
stationary point of f for each λ > 0. Compute the Hessian and its eigenvalues at (λ, λ ).
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Paper 2, Section II

5C Differential Equations
The current I(t) at time t in an electrical circuit subject to an applied voltage V (t)

obeys the equation

L
d2I

dt2
+R

dI

dt
+

1

C
I =

dV

dt
,

where R,L and C are the constant resistance, inductance and capacitance of the circuit
with R > 0, L > 0 and C > 0.

(a) In the case R = 0 and V (t) = 0, show that there exist time-periodic solutions of
frequency ω0, which you should find.

(b) In the case V (t) = H(t), the Heaviside function, calculate, subject to the condition

R2 >
4L

C
,

the current for t > 0, assuming it is zero for t < 0.

(c) If R > 0 and V (t) = sinω0t, where ω0 is as in part (a), show that there is a time-
periodic solution I0(t) of period T = 2π/ω0 and calculate its maximum value IM .

(i) Calculate the energy dissipated in each period, i.e., the quantity

D =

∫ T

0
RI0(t)

2 dt .

Show that the quantity defined by

Q =
2π

D
× LI2M

2

satisfies Qω0RC = 1.

(ii) Write down explicitly the general solution I(t) for all R > 0, and discuss the
relevance of I0(t) to the large time behaviour of I(t).
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Paper 2, Section II

6C Differential Equations

(a) Consider the system

dx

dt
= x(1− x)− xy

dy

dt
=

1

8
y(4x− 1)

for x(t) > 0, y(t) > 0. Find the critical points, determine their type and explain, with
the help of a diagram, the behaviour of solutions for large positive times t.

(b) Consider the system

dx

dt
= y + (1− x2 − y2)x

dy

dt
= −x+ (1− x2 − y2)y

for (x(t), y(t)) ∈ R
2. Rewrite the system in polar coordinates by setting x(t) =

r(t) cos θ(t) and y(t) = r(t) sin θ(t), and hence describe the behaviour of solutions for
large positive and large negative times.
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Paper 2, Section II

7C Differential Equations
Let y1 and y2 be two solutions of the differential equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 , −∞ < x <∞,

where p and q are given. Show, using the Wronskian, that

• either there exist α and β, not both zero, such that αy1(x)+βy2(x) vanishes
for all x,

• or given x0, A and B, there exist a and b such that y(x) = ay1(x) + by2(x)
satisfies the conditions y(x0) = A and y′(x0) = B.

Find power series y1 and y2 such that an arbitrary solution of the equation

y′′(x) = xy(x)

can be written as a linear combination of y1 and y2.
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Paper 2, Section II

8C Differential Equations

(a) Solve
dz

dt
= z2 subject to z(0) = z0. For which z0 is the solution finite for all t ∈ R ?

Let a be a positive constant. By considering the lines y = a(x− x0) for constant x0,
or otherwise, show that any solution of the equation

∂f

∂x
+ a

∂f

∂y
= 0

is of the form f(x, y) = F (y − ax) for some function F .

Solve the equation
∂f

∂x
+ a

∂f

∂y
= f2

subject to f(0, y) = g(y) for a given function g . For which g is the solution bounded
on R

2 ?

(b) By means of the change of variables X = αx + βy and T = γx + δy for appropriate
real numbers α, β, γ, δ , show that the equation

∂2f

∂x2
+

∂2f

∂x∂y
= 0 (∗)

can be transformed into the wave equation

1

c2
∂2F

∂T 2
− ∂2F

∂X2
= 0 ,

where F is defined by f(x, y) = F (αx + βy, γx + δy). Hence write down the general
solution of (∗).
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Paper 4, Section I

3A Dynamics and Relativity
Consider a system of particles with masses mi and position vectors xi. Write down

the definition of the position of the centre of mass R of the system. Let T be the total
kinetic energy of the system. Show that

T =
1

2
MṘ · Ṙ+

1

2

∑

i

miẏi · ẏi ,

where M is the total mass and yi is the position vector of particle i with respect to R.

The particles are connected to form a rigid body which rotates with angular speed ω
about an axis n through R, where n · n = 1. Show that

T =
1

2
MṘ · Ṙ+

1

2
Iω2 ,

where I =
∑

i Ii and Ii is the moment of inertia of particle i about n.

Paper 4, Section I

4A Dynamics and Relativity
A tennis ball of mass m is projected vertically upwards with initial speed u0 and

reaches its highest point at time T . In addition to uniform gravity, the ball experiences air
resistance, which produces a frictional force of magnitude αv, where v is the ball’s speed
and α is a positive constant. Show by dimensional analysis that T can be written in the
form

T =
m

α
f(λ)

for some function f of a dimensionless quantity λ.

Use the equation of motion of the ball to find f(λ).
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Paper 4, Section II

9A Dynamics and Relativity

(a) A photon with energy E1 in the laboratory frame collides with an electron of rest
mass m that is initially at rest in the laboratory frame. As a result of the collision
the photon is deflected through an angle θ as measured in the laboratory frame and
its energy changes to E2.

Derive an expression for
1

E2
− 1

E1
in terms of θ, m and c.

(b) A deuterium atom with rest mass m1 and energy E1 in the laboratory frame collides
with another deuterium atom that is initially at rest in the laboratory frame. The
result of this collision is a proton of rest mass m2 and energy E2, and a tritium atom
of rest mass m3. Show that, if the proton is emitted perpendicular to the incoming
trajectory of the deuterium atom as measured in the laboratory frame, then

m2
3 = m2

2 + 2

(
m1 +

E1

c2

)(
m1 −

E2

c2

)
.
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Paper 4, Section II

10A Dynamics and Relativity
A particle of unit mass moves under the influence of a central force. By considering

the components of the acceleration in polar coordinates (r, θ) prove that the magnitude
of the angular momentum is conserved. [You may use r̈ = (r̈ − rθ̇2)r̂+ (2ṙθ̇ + rθ̈)θ̂. ]

Now suppose that the central force is derived from the potential k/r, where k is a constant.

(a) Show that the total energy of the particle can be written in the form

E = 1
2 ṙ

2 + Veff(r).

Sketch Veff(r) in the cases k > 0 and k < 0.

(b) The particle is projected from a very large distance from the origin with speed v and
impact parameter b. [The impact parameter is the distance of closest approach to the
origin in absence of any force.]

(i) In the case k < 0, sketch the particle’s trajectory and find the shortest distance p
between the particle and the origin, and the speed u of the particle when r = p.

(ii) In the case k > 0, sketch the particle’s trajectory and find the corresponding
shortest distance p̃ between the particle and the origin, and the speed ũ of the
particle when r = p̃.

(iii) Find pp̃ and uũ in terms of b and v. [ In answering part (iii) you should assume
that |k| is the same in parts (i) and (ii). ]

Part IA, 2017 List of Questions [TURN OVER



14

Paper 4, Section II

11A Dynamics and Relativity

(a) Consider an inertial frame S, and a frame S′ which rotates with constant angular
velocity ω relative to S. The two frames share a common origin. Identify each term
in the equation

(
d2r

dt2

)

S′

=

(
d2r

dt2

)

S

− 2ω ×
(
dr

dt

)

S′

− ω × (ω × r).

(b) A small bead P of unit mass can slide without friction on a circular hoop of radius a.
The hoop is horizontal and rotating with constant angular speed ω about a fixed
vertical axis through a point O on its circumference.

(i) Using Cartesian axes in the rotating frame S′, with origin at O and x′-axis along
the diameter of the hoop through O, write down the position vector of P in
terms of a and the angle θ shown in the diagram (−1

2π 6 θ 6 1
2π).

O

P

x

y

θ

(ii) Working again in the rotating frame, find, in terms of a, θ, θ̇ and ω, an expression
for the horizontal component of the force exerted by the hoop on the bead.

(iii) For what value of θ is the bead in stable equilibrium? Find the frequency of
small oscillations of the bead about that point.
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Paper 4, Section II

12A Dynamics and Relativity

(a) A rocket moves in a straight line with speed v(t) and is subject to no external forces.
The rocket is composed of a body of mass M and fuel of mass m(t), which is burnt
at constant rate α and the exhaust is ejected with constant speed u relative to the
rocket. Show that

(M +m)
dv

dt
− αu = 0 .

Show that the speed of the rocket when all its fuel is burnt is

v0 + u log
(
1 +

m0

M

)
,

where v0 and m0 are the speed of the rocket and the mass of the fuel at t = 0.

(b) A two-stage rocket moves in a straight line and is subject to no external forces. The
rocket is initially at rest. The masses of the bodies of the two stages are kM and
(1− k)M , with 0 6 k 6 1, and they initially carry masses km0 and (1− k)m0 of fuel.
Both stages burn fuel at a constant rate α when operating and the exhaust is ejected
with constant speed u relative to the rocket. The first stage operates first, until all its
fuel is burnt. The body of the first stage is then detached with negligible force and
the second stage ignites.

Find the speed of the second stage when all its fuel is burnt. For 0 6 k < 1 compare
it with the speed of the rocket in part (a) in the case v0 = 0. Comment on the case
k = 1.
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Paper 3, Section I

1E Groups
Let w1, w2, w3 be distinct elements of C∪{∞}. Write down the Möbius map f that

sends w1, w2, w3 to ∞, 0, 1, respectively. [Hint: You need to consider four cases.]

Now let w4 be another element of C ∪ {∞} distinct from w1, w2, w3. Define the
cross-ratio [w1, w2, w3, w4] in terms of f .

Prove that there is a circle or line through w1, w2, w3 and w4 if and only if the
cross-ratio [w1, w2, w3, w4] is real.

[You may assume without proof that Möbius maps map circles and lines to circles

and lines and also that there is a unique circle or line through any three distinct points of

C ∪ {∞}.]

Paper 3, Section I

2E Groups
What does it mean to say that H is a normal subgroup of the group G? For a

normal subgroup H of G define the quotient group G/H. [You do not need to verify that
G/H is a group.]

State the Isomorphism Theorem.

Let

G =

{(
a b
0 d

) ∣∣∣ a, b, d ∈ R, ad 6= 0

}

be the group of 2× 2 invertible upper-triangular real matrices. By considering a suitable
homomorphism, show that the subset

H =

{(
1 b
0 1

) ∣∣∣ b ∈ R

}

of G is a normal subgroup of G and identify the quotient G/H.
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Paper 3, Section II

5E Groups
Let N be a normal subgroup of a finite group G of prime index p = |G : N |.
By considering a suitable homomorphism, show that if H is a subgroup of G that

is not contained in N , then H ∩N is a normal subgroup of H of index p.

Let C be a conjugacy class of G that is contained in N . Prove that C is either a
conjugacy class in N or is the disjoint union of p conjugacy classes in N .

[You may use standard theorems without proof.]

Paper 3, Section II

6E Groups
State Lagrange’s theorem. Show that the order of an element x in a finite group G

is finite and divides the order of G.

State Cauchy’s theorem.

List all groups of order 8 up to isomorphism. Carefully justify that the groups on
your list are pairwise non-isomorphic and that any group of order 8 is isomorphic to one
on your list. [You may use without proof the Direct Product Theorem and the description
of standard groups in terms of generators satisfying certain relations.]
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Paper 3, Section II

7E Groups

(a) Let G be a finite group acting on a finite set X. State the Orbit-Stabiliser theorem.
[Define the terms used.] Prove that

∑

x∈X

|Stab(x)| = n|G| ,

where n is the number of distinct orbits of X under the action of G.

Let S = {(g, x) ∈ G×X : g · x = x}, and for g ∈ G, let Fix(g) = {x ∈ X : g · x = x}.
Show that

|S| =
∑

x∈X

|Stab(x)| =
∑

g∈G

|Fix(g)| ,

and deduce that

n =
1

|G|
∑

g∈G

|Fix(g)| . (∗)

(b) Let H be the group of rotational symmetries of the cube. Show that H has 24
elements. [If your proof involves calculating stabilisers, then you must carefully verify
such calculations.]

Using (∗), find the number of distinct ways of colouring the faces of the cube red,
green and blue, where two colourings are distinct if one cannot be obtained from the
other by a rotation of the cube. [A colouring need not use all three colours.]

Paper 3, Section II

8E Groups
Prove that every element of the symmetric group Sn is a product of transpositions.

[You may assume without proof that every permutation is the product of disjoint cycles.]

(a) Define the sign of a permutation in Sn, and prove that it is well defined. Define the
alternating group An.

(b) Show that Sn is generated by the set {(1 2), (1 2 3 . . . n)}.
Given 1 6 k < n, prove that the set {(1 1+k), (1 2 3 . . . n)} generates Sn if and only
if k and n are coprime.
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Paper 4, Section I

1D Numbers and Sets

(a) Show that for all positive integers z and n, either z2n ≡ 0 (mod 3) or z2n ≡ 1 (mod 3).

(b) If the positive integers x, y, z satisfy x2 + y2 = z2, show that at least one of x and y
must be divisible by 3. Can both x and y be odd?

Paper 4, Section I

2D Numbers and Sets

(a) Give the definitions of relation and equivalence relation on a set S.

(b) Let Σ be the set of ordered pairs (A, f) where A is a non-empty subset of R and
f : A → R. Let R be the relation on Σ defined by requiring (A, f)R (B, g) if the
following two conditions hold:

(i) (A \B) ∪ (B \A) is finite and

(ii) there is a finite set F ⊂ A ∩B such that f(x) = g(x) for all x ∈ A ∩B \ F.

Show that R is an equivalence relation on Σ.
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Paper 4, Section II

5D Numbers and Sets

(a) State and prove the Fermat–Euler Theorem. Deduce Fermat’s Little Theorem. State
Wilson’s Theorem.

(b) Let p be an odd prime. Prove that X2 ≡ −1 (mod p) is solvable if and only if
p ≡ 1 (mod 4).

(c) Let p be prime. If h and k are non-negative integers with h + k = p − 1, prove that
h!k! + (−1)h ≡ 0 (mod p).

Paper 4, Section II

6D Numbers and Sets

(a) Define what it means for a set to be countable.

(b) Let A be an infinite subset of the set of natural numbers N = {0, 1, 2, ...}. Prove that
there is a bijection f : N → A.

(c) Let An be the set of natural numbers whose decimal representation ends with exactly
n − 1 zeros. For example, 71 ∈ A1, 70 ∈ A2 and 15000 ∈ A4. By applying the result
of part (b) with A = An, construct a bijection g : N×N → N. Deduce that the set of
rationals is countable.

(d) Let A be an infinite set of positive real numbers. If every sequence (aj)
∞
j=1 of distinct

elements with aj ∈ A for each j has the property that

lim
N→∞

1

N

N∑

j=1

aj = 0,

prove that A is countable.

[You may assume without proof that a countable union of countable sets is countable.]

Part IA, 2017 List of Questions



21

Paper 4, Section II

7D Numbers and Sets

(a) For positive integers n,m, k with k 6 n, show that

(
n

k

)(
k

n

)m

=

(
n− 1

k − 1

)m−1∑

ℓ=0

an,m,ℓ

(
k − 1

n− 1

)m−1−ℓ

giving an explicit formula for an,m,ℓ. [You may wish to consider the expansion of(
k−1
n−1 +

1
n−1

)m−1
.]

(b) For a function f : [0, 1] → R and each integer n > 1, the function Bn(f) : [0, 1] → R

is defined by

Bn(f)(x) =

n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k.

For any integer m > 0 let fm(x) = xm. Show that Bn(f0)(x) = 1 and Bn(f1)(x) = x
for all n > 1 and x ∈ [0, 1].

Show that for each integer m > 0 and each x ∈ [0, 1],

Bn(fm)(x) → fm(x) as n→ ∞ .

Deduce that for each integer m > 0,

lim
n→∞

1

4n

2n∑

k=0

(
k

n

)m(
2n

k

)
= 1.
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Paper 4, Section II

8D Numbers and Sets
Let (ak)

∞
k=1 be a sequence of real numbers.

(a) Define what it means for (ak)
∞
k=1 to converge. Define what it means for the series∑∞

k=1 ak to converge.

Show that if
∑∞

k=1 ak converges, then (ak)
∞
k=1 converges to 0.

If (ak)
∞
k=1 converges to a ∈ R, show that

lim
n→∞

1

n

n∑

k=1

ak = a .

(b) Suppose ak > 0 for every k. Let un =

n∑

k=1

(
ak +

1

ak

)
and vn =

n∑

k=1

(
ak −

1

ak

)
.

Show that (un)
∞
n=1 does not converge.

Give an example of a sequence (ak)
∞
k=1 with ak > 0 and ak 6= 1 for every k such that

(vn)
∞
n=1 converges.

If (vn)
∞
n=1 converges, show that

un
n

→ 2.
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Paper 2, Section I

3F Probability
Let X be a non-negative integer-valued random variable such that 0 < E(X2) <∞.

Prove that
E(X)2

E(X2)
6 P(X > 0) 6 E(X).

[You may use any standard inequality.]

Paper 2, Section I

4F Probability
Let X and Y be real-valued random variables with joint density function

f(x, y) =

{
xe−x(y+1) if x > 0 and y > 0

0 otherwise.

(i) Find the conditional probability density function of Y given X.

(ii) Find the expectation of Y given X.
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Paper 2, Section II

9F Probability
For a positive integer N , p ∈ [0, 1], and k ∈ {0, 1, . . . , N}, let

pk(N, p) =

(
N

k

)
pk(1− p)N−k.

(a) For fixed N and p, show that pk(N, p) is a probability mass function on {0, 1, . . . , N}
and that the corresponding probability distribution has mean Np and variance
Np(1− p).

(b) Let λ > 0. Show that, for any k ∈ {0, 1, 2, . . . },

lim
N→∞

pk(N,λ/N) =
e−λλk

k!
. (∗)

Show that the right-hand side of (∗) is a probability mass function on {0, 1, 2, . . . }.

(c) Let p ∈ (0, 1) and let a, b ∈ R with a < b. For all N , find integers ka(N) and kb(N)
such that

kb(N)∑

k=ka(N)

pk(N, p) →
1√
2π

∫ b

a

e−
1
2x

2

dx as N → ∞.

[You may use the Central Limit Theorem.]

Paper 2, Section II

10F Probability

(a) For any random variable X and λ > 0 and t > 0, show that

P(X > t) 6 E(eλX)e−λt.

For a standard normal random variable X, compute E(eλX) and deduce that

P(X > t) 6 e−
1

2
t2 .

(b) Let µ, λ > 0, µ 6= λ. For independent random variables X and Y with distributions
Exp(λ) and Exp(µ), respectively, compute the probability density functions of X +Y
and min{X,Y }.
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Paper 2, Section II

11F Probability
Let β > 0. The Curie–Weiss Model of ferromagnetism is the probability distribution

defined as follows. For n ∈ N, define random variables S1, . . . , Sn with values in {±1} such
that the probabilities are given by

P(S1 = s1, . . . , Sn = sn) =
1

Zn,β

exp


 β

2n

n∑

i=1

n∑

j=1

sisj




where Zn,β is the normalisation constant

Zn,β =
∑

s1∈{±1}

· · ·
∑

sn∈{±1}

exp


 β

2n

n∑

i=1

n∑

j=1

sisj


 .

(a) Show that E(Si) = 0 for any i.

(b) Show that P(S2 = +1|S1 = +1) > P(S2 = +1). [You may use E(SiSj) > 0 for all i, j
without proof. ]

(c) Let M = 1
n

∑n
i=1 Si. Show that M takes values in En = {−1+ 2k

n
: k = 0, . . . , n}, and

that for each m ∈ En the number of possible values of (S1, . . . , Sn) such that M = m
is

n!(
1+m
2 n

)
!
(
1−m
2 n

)
!
.

Find P(M = m) for any m ∈ En.
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Paper 2, Section II

12F Probability

(a) Let k ∈ {1, 2, . . . }. For j ∈ {0, . . . , k + 1}, let Dj be the first time at which a simple
symmetric random walk on Z with initial position j at time 0 hits 0 or k + 1. Show
E(Dj) = j(k + 1− j). [If you use a recursion relation, you do not need to prove that
its solution is unique.]

(b) Let (Sn) be a simple symmetric random walk on Z starting at 0 at time n = 0. For
k ∈ {1, 2, . . . }, let Tk be the first time at which (Sn) has visited k distinct vertices.
In particular, T1 = 0. Show E(Tk+1 − Tk) = k for k > 1. [You may use without proof
that, conditional on STk

= i, the random variables (STk+n)n>0 have the distribution
of a simple symmetric random walk starting at i.]

(c) For n > 3, let Zn be the circle graph consisting of vertices 0, . . . , n − 1 and edges
between k and k+1 where n is identified with 0. Let (Yi) be a simple random walk on
Zn starting at time 0 from 0. Thus Y0 = 0 and conditional on Yi the random variable
Yi+1 is Yi ± 1 with equal probability (identifying k + n with k).

The cover time T of the simple random walk on Zn is the first time at which the
random walk has visited all vertices. Show that E(T ) = n(n− 1)/2.
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Paper 3, Section I

3B Vector Calculus
Use the change of variables x = r cosh θ, y = r sinh θ to evaluate

∫

A

y dx dy ,

where A is the region of the xy-plane bounded by the two line segments:

y = 0, 0 6 x 6 1 ;

5y = 3x, 0 6 x 6 5
4 ;

and the curve

x2 − y2 = 1, x > 1 .

Paper 3, Section I

4B Vector Calculus

(a) The two sets of basis vectors ei and e′i (where i = 1, 2, 3) are related by

e′i = Rijej ,

where Rij are the entries of a rotation matrix. The components of a vector v with
respect to the two bases are given by

v = viei = v′ie
′
i .

Derive the relationship between vi and v
′
i.

(b) Let T be a 3× 3 array defined in each (right-handed orthonormal) basis. Using part
(a), state and prove the quotient theorem as applied to T.
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Paper 3, Section II

9B Vector Calculus

(a) The time-dependent vector field F is related to the vector field B by

F(x, t) = B(z) ,

where z = tx. Show that

(x·∇)F = t
∂F

∂t
.

(b) The vector fields B and A satisfy B = ∇×A. Show that ∇·B = 0.

(c) The vector field B satisfies ∇·B = 0. Show that

B(x) = ∇×
(
D(x)× x

)
,

where

D(x) =

∫ 1

0
tB(tx) dt .

Paper 3, Section II

10B Vector Calculus
By a suitable choice of u in the divergence theorem

∫

V

∇·u dV =

∫

S

u·dS ,

show that ∫

V

∇φdV =

∫

S

φdS (∗)

for any continuously differentiable function φ.

For the curved surface of the cone

x = (r cos θ, r sin θ,
√
3 r), 0 6

√
3 r 6 1, 0 6 θ 6 2π,

show that dS = (
√
3 cos θ,

√
3 sin θ,−1) r dr dθ.

Verify that (∗) holds for this cone and φ(x, y, z) = z2.

Part IA, 2017 List of Questions



29

Paper 3, Section II

11B Vector Calculus

(a) Let x = r(s) be a smooth curve parametrised by arc length s. Explain the meaning
of the terms in the equation

dt

ds
= κn ,

where κ(s) is the curvature of the curve.

Now let b = t× n. Show that there is a scalar τ(s) (the torsion) such that

db

ds
= −τn

and derive an expression involving κ and τ for
dn

ds
.

(b) Given a (nowhere zero) vector field F, the field lines, or integral curves, of F are the
curves parallel to F(x) at each point x. Show that the curvature κ of the field lines
of F satisfies

F× (F·∇)F

F 3
= ±κb , (∗)

where F = |F| .

(c) Use (∗) to find an expression for the curvature at the point (x, y, z) of the field lines
of F(x, y, z) = (x, y,−z) .
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Paper 3, Section II

12B Vector Calculus
Let S be a piecewise smooth closed surface in R

3 which is the boundary of a
volume V .

(a) The smooth functions φ and φ1 defined on R
3 satisfy

∇2φ = ∇2φ1 = 0

in V and φ(x) = φ1(x) = f(x) on S. By considering an integral of ∇ψ·∇ψ, where
ψ = φ− φ1, show that φ1 = φ.

(b) The smooth function u defined on R
3 satisfies u(x) = f(x) + C on S, where f is the

function in part (a) and C is constant. Show that

∫

V

∇u·∇u dV >

∫

V

∇φ·∇φdV

where φ is the function in part (a). When does equality hold?

(c) The smooth function w(x, t) satisfies

∇2w =
∂w

∂t

in V and
∂w

∂t
= 0 on S for all t. Show that

d

dt

∫

V

∇w·∇w dV 6 0

with equality only if ∇2w = 0 in V .
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Paper 1, Section I

1A Vectors and Matrices
Consider z ∈ C with |z| = 1 and arg z = θ, where θ ∈ [ 0, π).

(a) Prove algebraically that the modulus of 1+ z is 2 cos 1
2θ and that the argument is 1

2θ.
Obtain these results geometrically using the Argand diagram.

(b) Obtain corresponding results algebraically and geometrically for 1− z.

Paper 1, Section I

2C Vectors and Matrices
Let A and B be real n× n matrices.

Show that (AB)T = BTAT .

For any square matrix, the matrix exponential is defined by the series

eA = I +

∞∑

k=1

Ak

k!
.

Show that (eA)T = eA
T

. [You are not required to consider issues of convergence.]

Calculate, in terms of A and AT , the matrices Q0, Q1 and Q2 in the series for the
matrix product

etA etA
T

=
∞∑

k=0

Qkt
k , where t ∈ R.

Hence obtain a relation between A and AT which necessarily holds if etA is an orthogonal
matrix.
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Paper 1, Section II

5A Vectors and Matrices

(a) Define the vector product x × y of the vectors x and y in R
3. Use suffix notation to

prove that
x× (x× y) = x (x · y)− y (x · x).

(b) The vectors xn+1 (n = 0, 1, 2, . . . ) are defined by xn+1 = λa×xn, where a and x0 are
fixed vectors with |a| = 1 and a× x0 6= 0, and λ is a positive constant.

(i) Write x2 as a linear combination of a and x0. Further, for n > 1, express xn+2

in terms of λ and xn. Show, for n > 1, that |xn| = λn |a× x0|.
(ii) Let Xn be the point with position vector xn (n = 0, 1, 2, . . . ). Show that

X1,X2, . . . lie on a pair of straight lines.

(iii) Show that the line segment XnXn+1 (n > 1) is perpendicular to Xn+1Xn+2.
Deduce that XnXn+1 is parallel to Xn+2Xn+3.

Show that xn → 0 as n → ∞ if λ < 1, and give a sketch to illustrate the case
λ = 1.

(iv) The straight line through the points Xn+1 and Xn+2 makes an angle θ with the
straight line through the points Xn and Xn+3. Find cos θ in terms of λ.
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Paper 1, Section II

6B Vectors and Matrices

(a) Show that the eigenvalues of any real n × n square matrix A are the same as the
eigenvalues of AT .

The eigenvalues of A are λ1, λ2, . . ., λn and the eigenvalues of ATA are µ1, µ2, . . .,
µn. Determine, by means of a proof or a counterexample, whether the following are
necessary valid:

(i)
n∑

i=1
µi =

n∑
i=1

λ2i ;

(ii)
n∏

i=1
µi =

n∏
i=1

λ2i .

(b) The 3× 3 matrix B is given by

B = I +mnT ,

where m and n are orthogonal real unit vectors and I is the 3× 3 identity matrix.

(i) Show that m × n is an eigenvector of B, and write down a linearly independent
eigenvector. Find the eigenvalues of B and determine whether B is diagonalisable.

(ii) Find the eigenvectors and eigenvalues of BTB.
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Paper 1, Section II

7B Vectors and Matrices

(a) Show that a square matrix A is anti-symmetric if and only if xTAx = 0 for every
vector x.

(b) Let A be a real anti-symmetric n × n matrix. Show that the eigenvalues of A are
imaginary or zero, and that the eigenvectors corresponding to distinct eigenvalues
are orthogonal (in the sense that x†y = 0, where the dagger denotes the hermitian
conjugate).

(c) Let A be a non-zero real 3 × 3 anti-symmetric matrix. Show that there is a real
non-zero vector a such that Aa = 0.

Now let b be a real vector orthogonal to a. Show that A2b = −θ2b for some real
number θ.

The matrix eA is defined by the exponential series I + A + 1
2!A

2 + · · · . Express eAa
and eAb in terms of a,b, Ab and θ.

[You are not required to consider issues of convergence.]

Paper 1, Section II

8C Vectors and Matrices

(a) Given y ∈ R
3 consider the linear transformation T which maps

x 7→ Tx = (x · e1) e1 + x× y .

Express T as a matrix with respect to the standard basis e1, e2, e3 , and determine
the rank and the dimension of the kernel of T for the cases (i) y = c1e1 , where c1 is
a fixed number, and (ii) y · e1 = 0 .

(b) Given that the equation
AB x = d ,

where

A =



1 1 0
0 2 3
0 1 2


 , B =




1 4 1
−3 −2 1
1 −1 −1


 and d =



1
1
k


 ,

has a solution, show that 4k = 1.
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