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SECTION I

1I Number Theory
Define the Legendre symbol and the Jacobi symbol. Compute the Jacobi symbols(

202
11189

)
and

(
974
1001

)
, stating clearly any properties of these symbols that you use.

2H Topics in Analysis
Define what it means for a subset E of Rn to be convex. Which of the following

statements about a convex set E in Rn (with the usual norm) are always true, and which
are sometimes false? Give proofs or counterexamples as appropriate.

(i) The closure of E is convex.

(ii) The interior of E is convex.

(iii) If α : Rn → Rn is linear, then α(E) is convex.

(iv) If f : Rn → Rn is continuous, then f(E) is convex.

3G Coding and Cryptography
Show that the binary channel with channel matrix

(
1 0
1
2

1
2

)

has capacity log 5− 2.

4F Automata and Formal Languages
(a) Which of the following are regular languages? Justify your answers.

(i) {w ∈ {a, b}∗ | w is a nonempty string of alternating a’s and b’s}.

(ii) {wabw | w ∈ {a, b}∗}.

(b) Write down a nondeterministic finite-state automaton with ǫ-transitions which
accepts the language given by the regular expression (a+b)∗(bb+a)b. Describe in words
what this language is.

(c) Is the following language regular? Justify your answer.

{w ∈ {a, b}∗ | w does not end in ab or bbb}.

Part II, Paper 2
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5K Statistical Modelling
Define an exponential dispersion family. Prove that the range of the natural

parameter, Θ, is an open interval. Derive the mean and variance as a function of the
log normalizing constant.

[Hint: Use the convexity of ex, i.e. epx+(1−p)y 6 pex + (1− p)ey for all p ∈ [0, 1].]

6B Mathematical Biology
(a) The populations of two competing species satisfy

dN1

dt
= N1[ b1 − λ(N1 +N2) ] ,

dN2

dt
= N2[ b2 − λ(N1 +N2) ] ,

where b1 > b2 > 0 and λ > 0. Sketch the phase diagram (limiting attention to N1, N2 > 0).

The relative abundance of species 1 is defined by U = N1/(N1 +N2). Show that

dU

dt
= AU(1− U) ,

where A is a constant that should be determined.

(b) Consider the spatial system

∂u

∂t
= u(1− u) + D

∂2u

∂x2
,

and consider a travelling-wave solution of the form u(x, t) = f(x − ct) representing one
species (u = 1) invading territory previously occupied by another species (u = 0). By
linearising near the front of the invasion, show that the wave speed is given by c = 2

√
D.

[You may assume that the solution to the full nonlinear system will settle to the
slowest possible linear wave speed.]

7A Further Complex Methods
The Euler product formula for the Gamma function is

Γ(z) = lim
n→∞

n! nz

z(z + 1) . . . (z + n)
.

Use this to show that
Γ(2z)

22z Γ(z) Γ(z + 1
2)

= c ,

where c is a constant, independent of z. Find the value of c.
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8E Classical Dynamics
Consider the Lagrangian

L = A( θ̇2 + φ̇2 sin2 θ ) +B( ψ̇ + φ̇ cos θ )2 − C(cos θ)k ,

where A, B, C are positive constants and k is a positive integer. Find three conserved
quantities and show that u = cos θ satisfies

u̇2 = f(u) ,

where f(u) is a polynomial of degree k+2 which should be determined.

9C Cosmology
A spherical cloud of mass M has radius r(t) and initial radius r(0) = R. It contains

material with uniform mass density ρ(t), and zero pressure. Ignoring the cosmological
constant, show that if it is initially at rest at t = 0 and the subsequent gravitational
collapse is governed by Newton’s law r̈ = −GM/r2, then

ṙ2 = 2GM
(1
r
− 1

R

)
.

Suppose r is given parametrically by

r = R cos2 θ ,

where θ = 0 at t = 0. Derive a relation between θ and t and hence show that the cloud
collapses to radius r = 0 at

t =

√
3π

32Gρ0
,

where ρ0 is the initial mass density of the cloud.
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SECTION II

10H Topics in Analysis
Prove Bernstein’s theorem, which states that if f : [0, 1] → R is continuous and

fm(t) =
m∑

r=0

(
m

r

)
f(r/m)tr(1− t)m−r

then fm(t) → f(t) uniformly on [0, 1]. [Theorems from probability theory may be used
without proof provided they are clearly stated.]

Deduce Weierstrass’s theorem on polynomial approximation for any closed interval.

Proving any results on Chebyshev polynomials that you need, show that, if
g : [0, π] → R is continuous and ǫ > 0, then we can find an N > 0 and aj ∈ R, for
0 6 j 6 N , such that

∣∣∣ g(t)−
N∑

j=0

aj cos jt
∣∣∣ 6 ǫ

for all t ∈ [0, π]. Deduce that
∫ π
0 g(t) cos nt dt→ 0 as n→ ∞.

11G Coding and Cryptography
Define a BCH code of length n, where n is odd, over the field of 2 elements with

design distance δ. Show that the minimum weight of such a code is at least δ. [Results
about the Vandermonde determinant may be quoted without proof, provided they are
stated clearly.]

Let ω ∈ F16 be a root of X4 + X + 1. Let C be the BCH code of length 15
with defining set {ω, ω2, ω3, ω4}. Find the generator polynomial of C and the rank of C.
Determine the error positions of the following received words:

(i) r(X) = 1 +X6 +X7 +X8,

(ii) r(X) = 1 +X +X4 +X5 +X6 +X9.
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12A Further Complex Methods
The Hurwitz zeta function ζH(s, q) is defined for Re(q) > 0 by

ζH(s, q) =
∞∑

n=0

1

(q + n)s
.

State without proof the complex values of s for which this series converges.

Consider the integral

I(s, q) =
Γ(1− s)

2πi

∫

C
dz

zs−1 e qz

1− e z

where C is the Hankel contour. Show that I(s, q) provides an analytic continuation of
the Hurwitz zeta function for all s 6= 1. Include in your account a careful discussion of
removable singularities. [Hint: Γ(s) Γ(1− s) = π/ sin(πs).]

Show that I(s, q) has a simple pole at s = 1 and find its residue.

13E Classical Dynamics
Define what it means for the transformation R2n → R2n given by

(qi, pi) 7→
(
Qi(qj, pj), Pi(qj , pj)

)
, i, j = 1, . . . , n

to be canonical . Show that a transformation is canonical if and only if

{Qi, Qj} = 0 , {Pi, Pj} = 0 , {Qi, Pj} = δij .

Show that the transformation R2 → R2 given by

Q = q cos ǫ− p sin ǫ , P = q sin ǫ+ p cos ǫ

is canonical for any real constant ǫ. Find the corresponding generating function.

14F Logic and Set Theory
Define the von Neumann hierarchy of sets Vα, and show that each Vα is a transitive

set. Explain what is meant by saying that a binary relation on a set is well-founded and
extensional . State Mostowski’s Theorem.

Let r be the binary relation on ω defined by: 〈m,n〉 ∈ r if and only if 2m appears in
the base-2 expansion of n (i.e., the unique expression for n as a sum of distinct powers of 2).
Show that r is well-founded and extensional. To which transitive set is (ω, r) isomorphic?
Justify your answer.
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15G Graph Theory

Define the Turán graph Tr(n), where r and n are positive integers with n > r. For

which r and n is Tr(n) regular? For which r and n does Tr(n) contain T4(8) as a subgraph?

State and prove Turán’s theorem.

Let x1, . . . , xn be unit vectors in the plane. Prove that the number of pairs i < j

for which xi + xj has length less than 1 is at most ⌊n2/4⌋.

16H Galois Theory
(a) Let K ⊆ L be a finite separable field extension. Show that there exist only

finitely many intermediate fields K ⊆ F ⊆ L.

(b) Define what is meant by a normal extension. Is Q ⊆ Q(
√

1 +
√
7) a normal

extension? Justify your answer.

(c) Prove Artin’s lemma, which states: if K ⊆ L is a field extension, H is a finite
subgroup of AutK(L), and F := LH is the fixed field of H, then F ⊆ L is a Galois
extension with Gal(L/F ) = H.

17I Representation Theory
Show that the 1-dimensional (complex) characters of a finite group G form a group

under pointwise multiplication. Denote this group by Ĝ. Show that if g ∈ G, the map

χ 7→ χ(g) from Ĝ to C is a character of Ĝ, hence an element of
̂̂
G . What is the kernel of

the map G→ ̂̂
G ?

Show that if G is abelian the map G → ̂̂
G is an isomorphism. Deduce, from the

structure theorem for finite abelian groups, that the groups G and Ĝ are isomorphic as
abstract groups.

18F Number Fields
(a) Prove that 5 + 2

√
6 is a fundamental unit in Q(

√
6). [You may not assume the

continued fraction algorithm.]

(b) Determine the ideal class group of Q(
√
−55).
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19G Algebraic Topology
(a) Let K,L be simplicial complexes, and f : |K| → |L| a continuous map. What

does it mean to say that g : K → L is a simplicial approximation to f?

(b) Define the barycentric subdivision of a simplicial complex K, and state the
Simplicial Approximation Theorem.

(c) Show that if g is a simplicial approximation to f then f ≃ |g|.
(d) Show that the natural inclusion |K(1)| → |K| induces a surjective map on

fundamental groups.

20I Linear Analysis
(a) Let K be a topological space and let CR(K) denote the normed vector space of

bounded continuous real-valued functions on K with the norm ‖f‖CR(K) = supx∈K |f(x)|.
Define the terms uniformly bounded, equicontinuous and relatively compact as applied to
subsets S ⊂ CR(K).

(b) The Arzela–Ascoli theorem [which you need not prove] states in particular
that if K is compact and S ⊂ CR(K) is uniformly bounded and equicontinuous, then
S is relatively compact. Show by examples that each of the compactness of K, uniform
boundedness of S, and equicontinuity of S are necessary conditions for this conclusion.

(c) Let L be a topological space. Assume that there exists a sequence of compact
subsets Kn of L such that K1 ⊂ K2 ⊂ K3 ⊂ · · · ⊂ L and

⋃∞
n=1Kn = L. Suppose

S ⊂ CR(L) is uniformly bounded and equicontinuous and moreover satisfies the condition
that, for every ǫ > 0, there exists n ∈ N such that |f(x)| < ǫ for every x ∈ L \Kn and for
every f ∈ S. Show that S is relatively compact.

21H Riemann Surfaces
Suppose that f : C/Λ1 → C/Λ2 is a holomorphic map of complex tori, and let πj

denote the projection map C → C/Λj for j = 1, 2. Show that there is a holomorphic map
F : C → C such that π2F = fπ1.

Prove that F (z) = λz + µ for some λ, µ ∈ C. Hence deduce that two complex
tori C/Λ1 and C/Λ2 are conformally equivalent if and only if the lattices are related by
Λ2 = λΛ1 for some λ ∈ C∗.

Part II, Paper 2
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22H Algebraic Geometry
In this question we work over an algebraically closed field of characteristic zero. Let

Xo = Z(x6 + xy5 + y6 − 1) ⊂ A2 and let X ⊂ P2 be the closure of Xo in P2.

(a) Show that X is a non-singular curve.

(b) Show that ω = dx/(5xy4 + 6y5) is a regular differential on X.

(c) Compute the divisor of ω. What is the genus of X?

23G Differential Geometry
If an embedded surface S ⊂ R3 contains a line L, show that the Gaussian curvature

is non-positive at each point of L. Give an example where the Gaussian curvature is zero
at each point of L.

Consider the helicoid S given as the image of R2 in R3 under the map

φ(u, v) = (sinh v cosu, sinh v sinu, u).

What is the image of the corresponding Gauss map? Show that the Gaussian curvature
at a point φ(u, v) ∈ S is given by −1/ cosh4 v, and hence is strictly negative everywhere.
Show moreover that there is a line in S passing through any point of S.

[General results concerning the first and second fundamental forms on an oriented
embedded surface S ⊂ R3 and the Gauss map may be used without proof in this question.]

24J Probability and Measure
(a) State Jensen’s inequality. Give the definition of ‖ · ‖Lp and the space Lp for

1 < p <∞. If ‖f − g‖Lp = 0, is it true that f = g? Justify your answer. State and prove
Hölder’s inequality using Jensen’s inequality.

(b) Suppose that (E, E , µ) is a finite measure space. Show that if 1 < q < p and
f ∈ Lp(E) then f ∈ Lq(E). Give the definition of ‖ · ‖L∞ and show that ‖f‖Lp → ‖f‖L∞

as p→ ∞.

(c) Suppose that 1 < q < p <∞. Show that if f belongs to both Lp(R) and Lq(R),
then f ∈ Lr(R) for any r ∈ [q, p]. If f ∈ Lp(R), must we have f ∈ Lq(R)? Give a proof or
a counterexample.
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25J Applied Probability
(a) Define an M/M/∞ queue and write without proof its stationary distribution.

State Burke’s theorem for an M/M/∞ queue.

(b) Let X be an M/M/∞ queue with arrival rate λ and service rate µ started from
the stationary distribution. For each t, denote by A1(t) the last time before t that a
customer departed the queue and A2(t) the first time after t that a customer departed
the queue. If there is no arrival before time t, then we set A1(t) = 0. What is the limit
as t→ ∞ of E[A2(t)−A1(t)]? Explain.

(c) Consider a system of N queues serving a finite number K of customers in the
following way: at station 1 6 i 6 N , customers are served immediately and the service
times are independent exponentially distributed with parameter µi; after service, each
customer goes to station j with probability pij > 0. We assume here that the system is
closed, i.e.,

∑
j pij = 1 for all 1 6 i 6 N .

Let S = {(n1, . . . , nN ) : ni ∈ N,
∑N

i=1 ni = K} be the state space of the Markov
chain. Write down its Q-matrix. Also write down the Q-matrix R corresponding to the
position in the network of one customer (that is, when K = 1). Show that there is a
unique distribution (λi)16i6N such that λR = 0. Show that

π(n) = CN

N∏

i=1

λni

i

ni!
, n = (n1, . . . , nN ) ∈ S,

defines an invariant measure for the chain. Are the queue lengths independent at
equilibrium?

26J Principles of Statistics
(a) State and prove the Cramér–Rao inequality in a parametric model {f(θ) : θ ∈ Θ},

where Θ ⊆ R. [Necessary regularity conditions on the model need not be specified.]

(b) Let X1, . . . ,Xn be i.i.d. Poisson random variables with unknown parameter
EX1 = θ > 0. For X̄n = (1/n)

∑n
i=1Xi and S

2 = (n − 1)−1
∑n

i=1(Xi − X̄n)
2 define

Tα = αX̄n + (1− α)S2, 0 6 α 6 1.

Show that Varθ(Tα) > Varθ(X̄n) for all values of α, θ.

Now suppose θ̃ = θ̃(X1, . . . ,Xn) is an estimator of θ with possibly nonzero bias
B(θ) = Eθθ̃ − θ. Suppose the function B is monotone increasing on (0,∞). Prove that
the mean-squared errors satisfy

Eθ(θ̃n − θ)2 > Eθ(X̄n − θ)2 for all θ ∈ Θ.

Part II, Paper 2
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27K Stochastic Financial Models
In the context of the Black–Scholes model, let S0 be the initial price of the stock,

and let σ be its volatility. Assume that the risk-free interest rate is zero and the stock
pays no dividends. Let EC(S0,K, σ, T ) denote the initial price of a European call option
with strike K and maturity date T .

(a) Show that the Black–Scholes formula can be written in the form

EC(S0,K, σ, T ) = S0Φ(d1)−KΦ(d2),

where d1 and d2 depend on S0, K, σ and T , and Φ is the standard normal distribution
function.

(b) Let EP(S0,K, σ, T ) be the initial price of a put option with strikeK and maturity
T . Show that

EP(S0,K, σ, T ) = EC(S0,K, σ, T ) +K − S0 .

(c) Show that
EP(S0,K, σ, T ) = EC(K,S0, σ, T ) .

(d) Consider a European contingent claim with maturity T and payout

ST I{ST6K} −KI{ST>K} .

Assuming K > S0, show that its initial price can be written as EC(S0,K, σ̂, T ) for a
volatility parameter σ̂ which you should express in terms of S0,K, σ and T .

28K Optimization and Control
Consider a Markov decision problem with finite state space X, value function F and

dynamic programming equation F = LF , where

(Lφ)(i) = min
a∈{0,1}

{
c(i, a) + β

∑
j∈X Pij(a)φ(j)

}
.

Suppose 0 < β < 1, and |c(i, a)| 6 B for all i ∈ X, a ∈ {0, 1}. Prove there exists
a deterministic stationary Markov policy that is optimal, explaining what the italicised
words mean.

Let Fn = LnF0, where F0 = 0, and Mn = max i∈X |F (i) − Fn(i)|. Prove that

Mn 6 βMn−1 6 βnB/(1− β).

Deduce that the value iteration algorithm converges to an optimal policy in a finite
number of iterations.
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29C Asymptotic Methods
What is meant by the asymptotic relation

f(z) ∼ g(z) as z → z0 , Arg (z − z0) ∈ (θ0, θ1) ?

Show that

sinh(z−1) ∼ 1

2
exp(z−1) as z → 0 , Arg z ∈ (−π/2, π/2) ,

and find the corresponding result in the sector Arg z ∈ (π/2, 3π/2).

What is meant by the asymptotic expansion

f(z) ∼
∞∑

j=0

cj(z − z0)
j as z → z0 , Arg (z − z0) ∈ (θ0, θ1) ?

Show that the coefficients {cj}∞j=0 are determined uniquely by f . Show that if f is analytic
at z0, then its Taylor series is an asymptotic expansion for f as z → z0 (for any Arg (z−z0)).

Show that

u(x, t) =

∫ ∞

−∞
exp(−ik2t+ ikx) f(k) dk

defines a solution of the equation i ∂tu + ∂2xu = 0 for any smooth and rapidly decreasing
function f . Use the method of stationary phase to calculate the leading-order behaviour
of u(λt, t) as t→ +∞, for fixed λ.

30E Dynamical Systems
Consider the nonlinear oscillator

ẋ = y − µx(12 |x| − 1) ,

ẏ = −x .

(a) Use the Hamiltonian for µ = 0 to find a constraint on the size of the domain of
stability of the origin when µ < 0.

(b) Assume that given µ > 0 there exists an R such that all trajectories eventually
remain within the region |x| 6 R. Show that there must be a limit cycle, stating carefully
any result that you use. [You need not show that there is only one periodic orbit.]

(c) Use the energy-balance method to find the approximate amplitude of the limit
cycle for 0 < µ≪ 1.

(d) Find the approximate shape of the limit cycle for µ ≫ 1, and calculate the
leading-order approximation to its period.
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31D Integrable Systems
What does it mean for gǫ : (x, u) 7→ (x̃, ũ) to describe a 1-parameter group of

transformations? Explain how to compute the vector field

V = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
(∗)

that generates such a 1-parameter group of transformations.

Suppose now u = u(x). Define the nth prolongation, pr(n)gǫ, of gǫ and the vector
field which generates it. If V is defined by (∗) show that

pr(n)V = V +

n∑

k=1

ηk
∂

∂u(k)
,

where u(k) = dku/dxk and ηk are functions to be determined.

The curvature of the curve u = u(x) in the (x, u)-plane is given by

κ =
uxx

(1 + u2x)
3/2

.

Rotations in the (x, u)-plane are generated by the vector field

W = x
∂

∂u
− u

∂

∂x
.

Show that the curvature κ at a point along a plane curve is invariant under such rotations.
Find two further transformations that leave κ invariant.
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32A Principles of Quantum Mechanics
(a) Let | j m 〉 be standard, normalised angular momentum eigenstates with labels

specifying eigenvalues for J2 and J3. Taking units in which ~ = 1,

J±| j m 〉 =
{
(j∓m)(j±m+1)

}1/2 | j m±1 〉 .

Check the coefficients above by computing norms of states, quoting any angular momentum
commutation relations that you require.

(b) Two particles, each of spin s > 0, have combined spin states |J M 〉. Find
expressions for all such states with M = 2s−1 in terms of product states.

(c) Suppose that the particles in part (b) move about their centre of mass with a
spatial wavefunction that is a spherically symmetric function of relative position. If the
particles are identical, what spin states |J 2s−1 〉 are allowed? Justify your answer.

(d) Now consider two particles of spin 1 that are not identical and are both at rest.
If the 3-component of the spin of each particle is zero, what is the probability that their
total, combined spin is zero?

33A Applications of Quantum Mechanics
A particle of mass m moves in three dimensions subject to a potential V (r) localised

near the origin. The wavefunction for a scattering process with incident particle of
wavevector k is denoted ψ(k, r). With reference to the asymptotic form of ψ, define
the scattering amplitude f(k,k′), where k′ is the wavevector of the outgoing particle with
|k′| = |k| = k.

By recasting the Schrödinger equation for ψ(k, r) as an integral equation, show that

f(k,k′) = − m

2π~2

∫
d3r′ exp(−ik′ · r′)V (r′)ψ(k, r′) .

[You may assume that

G(k; r) = − 1

4π|r| exp( ik|r| )

is the Green’s function for ∇2 + k2 which obeys the appropriate boundary conditions for
a scattering solution.]

Now suppose V (r) = λU(r), where λ ≪ 1 is a dimensionless constant. Determine
the first two non-zero terms in the expansion of f(k,k′) in powers of λ, giving each term
explicitly as an integral over one or more position variables r, r′, . . . .

Evaluate the contribution to f(k,k′) of order λ in the case U(r) = δ( |r| − a ),
expressing the answer as a function of a, k and the scattering angle θ (defined so that
k · k′ = k2 cos θ).
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34C Statistical Physics
(a) What is meant by the canonical ensemble? Consider a system in the canonical

ensemble that can be in states |n〉 , n = 0, 1, 2, . . . with energies En. Write down the
partition function for this system and the probability p(n) that the system is in state |n〉.
Derive an expression for the average energy 〈E〉 in terms of the partition function.

(b) Consider an anharmonic oscillator with energy levels

~ω

[(
n+

1

2

)
+ δ
(
n+

1

2

)2 ]
, n = 0, 1, 2, . . . ,

where ω is a positive constant and 0 < δ ≪ 1 is a small constant. Let the oscillator be in
contact with a reservoir at temperature T . Show that, to linear order in δ, the partition
function Z1 for the oscillator is given by

Z1 =
c1

sinh x
2

[
1 + δ c2 x

(
1 +

2

sinh2 x
2

)]
, x =

~ω

kBT
,

where c1 and c2 are constants to be determined. Also show that, to linear order in δ, the
average energy of a system of N uncoupled oscillators of this type is given by

〈E〉 = N~ω

2

{
c3 coth

x

2
+ δ

[
c4 +

c5

sinh2 x
2

(
1− x coth

x

2

)]}
,

where c3, c4, c5 are constants to be determined.
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35D General Relativity
The Kasner (vacuum) cosmological model is defined by the line element

ds2 = −c2dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2 with t > 0 ,

where p1, p2, p3 are constants with p1 + p2 + p3 = p21 + p22 + p23 = 1 and 0 < p1 < 1. Show
that p2 p3 < 0.

Write down four equations that determine the null geodesics of the Kasner model.

If ka is the tangent vector to the trajectory of a photon and ua is the four-velocity of
a comoving observer (i.e., an observer at rest in the (t, x, y, z) coordinate system above),
what is the physical interpretation of kau

a ?

Let O be a comoving observer at the origin, x = y = z = 0, and let S be a comoving
source of photons located on one of the spatial coordinate axes.

(i) Show that photons emitted by S and observed by O can be either red-
shifted or blue-shifted, depending on the location of S.

(ii) Given any fixed time t = T , show that there are locations for S on each
coordinate axis from which no photons reach O for t 6 T .

Now suppose that p1 = 1 and p2 = p3 = 0. Does the property in (ii) still hold?
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36B Fluid Dynamics II
For a two-dimensional flow in plane polar coordinates (r, θ), state the relationship

between the streamfunction ψ(r, θ) and the flow components ur and uθ. Show that the
vorticity ω is given by ω = −∇2ψ, and deduce that the streamfunction for a steady
two-dimensional Stokes flow satisfies the biharmonic equation

∇4ψ = 0 .

A rigid stationary circular disk of radius a occupies the region r 6 a. The flow far
from the disk tends to a steady straining flow u∞ = (−Ex,Ey), where E is a constant.
Inertial forces may be neglected. Calculate the streamfunction, ψ∞(r, θ), for the far-field
flow.

By making an appropriate assumption about its dependence on θ, find the stream-
function ψ for the flow around the disk, and deduce the flow components, ur(r, θ) and
uθ(r, θ).

Calculate the tangential surface stress, σrθ, acting on the boundary of the disk.
[
Hints: In plane polar coordinates (r, θ),

∇ · u =
1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

, ω =
1

r

∂(ruθ)

∂r
− 1

r

∂ur
∂θ

,

∇2V =
1

r

∂

∂r

(
r
∂V

∂r

)
+

1

r2
∂2V

∂θ2
, erθ =

1

2

(
r
∂

∂r

(uθ
r

)
+

1

r

∂ur
∂θ

)
.
]
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37D Waves
Starting from the equations for one-dimensional unsteady flow of a perfect gas at

constant entropy, show that the Riemann invariants

R± = u± 2(c − c0)

γ − 1

are constant on characteristics C± given by dx/dt = u ± c, where u(x, t) is the speed of
the gas, c(x, t) is the local speed of sound, c0 is a constant and γ > 1 is the exponent in
the adiabatic equation of state for p(ρ).

At time t = 0 the gas occupies x > 0 and is at rest at uniform density ρ0, pressure
p0 and sound speed c0. For t > 0, a piston initially at x = 0 has position x = X(t), where

X(t) = −U0 t
(
1− t

2t0

)

and U0 and t0 are positive constants. For the case 0 < U0 < 2c0/(γ− 1), sketch the piston
path x = X(t) and the C+ characteristics in x > X(t) in the (x, t)-plane, and find the
time and place at which a shock first forms in the gas.

Do likewise for the case U0 > 2c0/(γ − 1).
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38B Numerical Analysis
(a) The advection equation

ut = ux, 0 6 x 6 1, t > 0

is discretised using an equidistant grid with stepsizes ∆x = h and ∆t = k. The
spatial derivatives are approximated with central differences and the resulting ODEs are
approximated with the trapezoidal rule. Write down the relevant difference equation for
determining (un+1

m ) from (unm). What is the name of this scheme? What is the local
truncation error?

The boundary condition is periodic, u(0, t) = u(1, t). Explain briefly how to write
the discretised scheme in the form Bun+1 = Cun, where the matrices B and C, to be
identified, have a circulant form. Using matrix analysis, find the range of µ = ∆t/∆x
for which the scheme is stable. [Standard results may be used without proof if quoted
carefully.]

[Hint: An n× n circulant matrix has the form

A =




a0 a1 . . . an−1

an−1
. . .

. . .
...

...
. . .

. . . a1
a1 . . . an−1 a0




.

All such matrices have the same set of eigenvectors vℓ =
(
ωjℓ
)n−1

j=0
, ℓ = 0, 1, . . . , n−1,

where ω = e2πi/n, and the corresponding eigenvalues are λℓ =
∑n−1

k=0 akω
kℓ. ]

(b) Consider the advection equation on the unit square

ut = aux + buy, 0 6 x, y 6 1, t > 0 ,

where u satisfies doubly periodic boundary conditions, u(0, y) = u(1, y), u(x, 0) = u(x, 1),
and a(x, y) and b(x, y) are given doubly periodic functions. The system is discretised
with the Crank–Nicolson scheme, with central differences for the space derivatives, using
an equidistant grid with stepsizes ∆x = ∆y = h and ∆t = k. Write down the relevant
difference equation, and show how to write the scheme in the form

un+1 = (I − 1
4µA)

−1(I + 1
4µA)u

n , (∗)

where the matrix A should be identified. Describe how (∗) can be approximated by Strang
splitting, and explain the advantages of doing so.

[Hint: Inversion of the matrix B in part (a) has a similar computational cost to that of a
tridiagonal matrix. ]

END OF PAPER
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