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SECTION I

1D Groups
Let G be a group, and let H be a subgroup of G. Show that the following are

equivalent.

(i) a−1b−1ab ∈ H for all a, b ∈ G.

(ii) H is a normal subgroup of G and G/H is abelian.

Hence find all abelian quotient groups of the dihedral group D10 of order 10.

2D Groups
State and prove Lagrange’s theorem.

Let p be an odd prime number, and let G be a finite group of order 2p which has a
normal subgroup of order 2. Show that G is a cyclic group.

3C Vector Calculus
State the chain rule for the derivative of a composition t 7→ f(X(t)) , where

f : Rn → R and X : R → R
n are smooth.

Consider parametrized curves given by

x(t) = (x(t), y(t)) = (a cos t, a sin t) .

Calculate the tangent vector
dx

dt
in terms of x(t) and y(t) . Given that u(x, y) is a smooth

function in the upper half-plane {(x, y) ∈ R
2 | y > 0} satisfying

x
∂u

∂y
− y

∂u

∂x
= u ,

deduce that
d

dt
u
(

x(t), y(t)
)

= u
(

x(t), y(t)
)

.

If u(1, 1) = 10, find u(−1, 1).
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4C Vector Calculus
If v = (v1, v2, v3) and w = (w1, w2, w3) are vectors in R

3, show that Tij = viwj

defines a rank 2 tensor. For which choices of the vectors v and w is Tij isotropic?

Write down the most general isotropic tensor of rank 2.

Prove that ǫijk defines an isotropic rank 3 tensor.
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SECTION II

5D Groups
For each of the following, either give an example or show that none exists.

(i) A non-abelian group in which every non-trivial element has order 2.

(ii) A non-abelian group in which every non-trivial element has order 3.

(iii) An element of S9 of order 18.

(iv) An element of S9 of order 20.

(v) A finite group which is not isomorphic to a subgroup of an alternating group.

6D Groups
Define the sign, sgn(σ), of a permutation σ ∈ Sn and prove that it is well defined.

Show that the function sgn : Sn → {1,−1} is a homomorphism.

Show that there is an injective homomorphism ψ : GL2(Z/2Z) → S4 such that
sgn ◦ ψ is non-trivial.

Show that there is an injective homomorphism φ : Sn → GLn(R) such that
det(φ(σ)) = sgn(σ).

7D Groups
State and prove the orbit-stabiliser theorem.

Let p be a prime number, and G be a finite group of order pn with n > 1. If N is a
non-trivial normal subgroup of G, show that N ∩ Z(G) contains a non-trivial element.

If H is a proper subgroup of G, show that there is a g ∈ G\H such that g−1Hg = H.

[You may use Lagrange’s theorem, provided you state it clearly.]
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8D Groups
Define the Möbius group M and its action on the Riemann sphere C∞. [You are not

required to verify the group axioms.] Show that there is a surjective group homomorphism
φ : SL2(C) → M, and find the kernel of φ.

Show that if a non-trivial element of M has finite order, then it fixes precisely
two points in C∞. Hence show that any finite abelian subgroup of M is either cyclic or
isomorphic to C2 × C2.

[You may use standard properties of the Möbius group, provided that you state
them clearly.]

9C Vector Calculus
What is a conservative vector field on R

n?

State Green’s theorem in the plane R
2 .

(a) Consider a smooth vector field V =
(

P (x, y), Q(x, y)
)

defined on all of R2 which
satisfies

∂Q

∂x
−
∂P

∂y
= 0 .

By considering

F (x, y) =

∫ x

0

P (x′, 0) dx′ +

∫ y

0

Q(x, y′) dy′

or otherwise, show that V is conservative.

(b) Now let V =
(

1 + cos(2πx+ 2πy), 2 + cos(2πx+ 2πy)
)

. Show that there exists
a smooth function F (x, y) such that V = ∇F .

Calculate
∫

C
V·dx , where C is a smooth curve running from (0, 0) to (m,n) ∈ Z

2.
Deduce that there does not exist a smooth function F (x, y) which satisfies
V = ∇F and which is, in addition, periodic with period 1 in each coordinate
direction, i.e. F (x, y) = F (x+ 1, y) = F (x, y + 1) .
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10C Vector Calculus
Define the Jacobian J [u] of a smooth mapping u : R3 → R

3. Show that if V is the
vector field with components

Vi =
1

3!
ǫijkǫabc

∂ua
∂xj

∂ub
∂xk

uc ,

then J [u] = ∇ · V . If v is another such mapping, state the chain rule formula for the
derivative of the composition w(x) = u(v(x)), and hence give J [w] in terms of J [u] and
J [v].

Let F : R3 → R
3 be a smooth vector field. Let there be given, for each t ∈ R, a

smooth mapping ut : R
3 → R

3 such that ut(x) = x+ tF(x) + o(t) as t→ 0. Show that

J [ut] = 1 + tQ(x) + o(t)

for some Q(x), and express Q in terms of F. Assuming now that ut+s(x) = ut(us(x)),
deduce that if ∇ · F = 0 then J [ut] = 1 for all t ∈ R . What geometric property of the
mapping x 7→ ut(x) does this correspond to?
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11C Vector Calculus

(a) For smooth scalar fields u and v, derive the identity

∇ · (u∇v − v∇u) = u∇2v − v∇2u

and deduce that
∫

ρ6|x|6r

(

v∇2u− u∇2v
)

dV =

∫

|x|=r

(

v
∂u

∂n
− u

∂v

∂n

)

dS

−

∫

|x|=ρ

(

v
∂u

∂n
− u

∂v

∂n

)

dS .

Here ∇2 is the Laplacian,
∂

∂n
= n · ∇ where n is the unit outward normal, and dS is

the scalar area element.

(b) Give the expression for
(

∇×V
)

i
in terms of ǫijk . Hence show that

∇×
(

∇×V
)

= ∇(∇ ·V) − ∇2V .

(c) Assume that if ∇2ϕ = − ρ , where ϕ(x) = O(|x|−1) and ∇ϕ(x) = O(|x|−2) as
|x| → ∞ , then

ϕ(x) =

∫

R3

ρ(y)

4π|x− y|
dV .

The vector fields B and J satisfy

∇×B = J .

Show that ∇ · J = 0 . In the case that B = ∇×A, with ∇ · A = 0, show that

A(x) =

∫

R3

J(y)

4π|x− y|
dV , (∗)

and hence that

B(x) =

∫

R3

J(y)× (x− y)

4π|x− y|3
dV .

Verify that A given by (∗) does indeed satisfy ∇ · A = 0 . [It may be useful to make
a change of variables in the right hand side of (∗).]
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12C Vector Calculus

(a) Let
F = (z, x, y)

and let C be a circle of radius R lying in a plane with unit normal vector (a, b, c).
Calculate∇×F and use this to compute

∮

C
F·dx . Explain any orientation conventions

which you use.

(b) Let F : R3 → R
3 be a smooth vector field such that the matrix with entries

∂Fj

∂xi
is

symmetric. Prove that
∮

C
F · dx = 0 for every circle C ⊂ R

3 .

(c) Let F =
1

r
(x, y, z), where r =

√

x2 + y2 + z2 and let C be the circle which is the

intersection of the sphere (x−5)2+(y−3)2+(z−2)2 = 1 with the plane 3x−5y−z = 2.
Calculate

∮

C
F · dx.

(d) Let F be the vector field defined, for x2 + y2 > 0, by

F =

(

−y

x2 + y2
,

x

x2 + y2
, z

)

.

Show that ∇ × F = 0. Let C be the curve which is the intersection of the cylinder
x2 + y2 = 1 with the plane z = x+ 200. Calculate

∮

C
F · dx.

END OF PAPER
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