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Paper 3, Section II

21H Algebraic Geometry
(a) Let X be an affine variety. Define the tangent space of X at a point P . Say

what it means for the variety to be singular at P .

Define the dimension of X in terms of (i) the tangent spaces of X, and (ii) Krull
dimension.

(b) Consider the ideal I generated by the set {y, y2 − x3 + xy3} ⊆ k[x, y]. What is
Z(I) ⊆ A2?

Using the generators of the ideal, calculate the tangent space of a point in Z(I).
What has gone wrong? [A complete argument is not necessary.]

(c) Calculate the dimension of the tangent space at each point p ∈ X for X =
Z(x− y2, x− zw) ⊆ A4, and determine the location of the singularities of X.

Paper 2, Section II

22H Algebraic Geometry
In this question we work over an algebraically closed field of characteristic zero. Let

Xo = Z(x6 + xy5 + y6 − 1) ⊂ A2 and let X ⊂ P2 be the closure of Xo in P2.

(a) Show that X is a non-singular curve.

(b) Show that ω = dx/(5xy4 + 6y5) is a regular differential on X.

(c) Compute the divisor of ω. What is the genus of X?

Paper 4, Section II

22H Algebraic Geometry
(a) Let C be a smooth projective curve, and let D be an effective divisor on C.

Explain how D defines a morphism φD from C to some projective space.

State a necessary and sufficient condition on D so that the pull-back of a hyperplane
via φD is an element of the linear system |D|.

State necessary and sufficient conditions for φD to be an isomorphism onto its image.

(b) Let C now have genus 2, and let K be an effective canonical divisor. Show that
the morphism φK is a morphism of degree 2 from C to P1.

Consider the divisor K + P1 + P2 for points Pi with P1 + P2 6∼ K. Show that the
linear system associated to this divisor induces a morphism φ from C to a quartic curve
in P2. Show furthermore that φ(P ) = φ(Q), with P 6= Q, if and only if {P,Q} = {P1, P2}.

[You may assume the Riemann–Roch theorem.]
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Paper 1, Section II

23H Algebraic Geometry
Let k be an algebraically closed field.

(a) Let X and Y be affine varieties defined over k. Given a map f : X → Y , define
what it means for f to be a morphism of affine varieties.

(b) Let f : A1 → A3 be the map given by

f(t) = (t, t2, t3).

Show that f is a morphism. Show that the image of f is a closed subvariety of A3 and
determine its ideal.

(c) Let g : P1 × P1 × P1 → P7 be the map given by

g
(
(s1, t1), (s2, t2), (s3, t3)

)
= (s1s2s3, s1s2t3, s1t2s3, s1t2t3, t1s2s3, t1s2t3, t1t2s3, t1t2t3).

Show that the image of g is a closed subvariety of P7.

Part II, 2016 List of Questions



5

Paper 3, Section II

18G Algebraic Topology
Construct a space X as follows. Let Z1, Z2, Z3 each be homeomorphic to the

standard 2-sphere S2 ⊆ R3. For each i, let xi ∈ Zi be the North pole (1, 0, 0) and let
yi ∈ Zi be the South pole (−1, 0, 0). Then

X = (Z1 ⊔ Z2 ⊔ Z3)/ ∼

where xi+1 ∼ yi for each i (and indices are taken modulo 3).

(a) Describe the universal cover of X.

(b) Compute the fundamental group of X (giving your answer as a well-known
group).

(c) Show that X is not homotopy equivalent to the circle S1.

Paper 2, Section II

19G Algebraic Topology
(a) Let K,L be simplicial complexes, and f : |K| → |L| a continuous map. What

does it mean to say that g : K → L is a simplicial approximation to f?

(b) Define the barycentric subdivision of a simplicial complex K, and state the
Simplicial Approximation Theorem.

(c) Show that if g is a simplicial approximation to f then f ≃ |g|.
(d) Show that the natural inclusion |K(1)| → |K| induces a surjective map on

fundamental groups.

Paper 1, Section II

20G Algebraic Topology
Let T = S1×S1 be the 2-dimensional torus. Let α : S1 → T be the inclusion of the

coordinate circle S1 × {1}, and let X be the result of attaching a 2-cell along α.

(a) Write down a presentation for the fundamental group of X (with respect to
some basepoint), and identify it with a well-known group.

(b) Compute the simplicial homology of any triangulation of X.

(c) Show that X is not homotopy equivalent to any compact surface.
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Paper 4, Section II

20G Algebraic Topology
Let T = S1 × S1 be the 2-dimensional torus, and let X be constructed from T by

removing a small open disc.

(a) Show that X is homotopy equivalent to S1 ∨ S1.

(b) Show that the universal cover of X is homotopy equivalent to a tree.

(c) Exhibit (finite) cell complexes X,Y , such that X and Y are not homotopy
equivalent but their universal covers X̃, Ỹ are.

[State carefully any results from the course that you use.]
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Paper 1, Section II

32A Applications of Quantum Mechanics
A particle in one dimension of mass m and energy E = ~2k2/2m (k > 0) is incident

from x = −∞ on a potential V (x) with V (x) → 0 as x → −∞ and V (x) = ∞ for x > 0.
The relevant solution of the time-independent Schrödinger equation has the asymptotic
form

ψ(x) ∼ exp(ikx) + r(k) exp(−ikx) , x→ −∞ .

Explain briefly why a pole in the reflection amplitude r(k) at k = iκ with κ > 0 corresponds
to the existence of a stable bound state in this potential. Indicate why a pole in r(k) just
below the real k-axis, at k = k0− iρ with k0 ≫ ρ > 0, corresponds to a quasi-stable bound
state. Find an approximate expression for the lifetime τ of such a quasi-stable state.

Now suppose that

V (x) =

{
(~2U/2m) δ(x + a) for x < 0

∞ for x > 0

where U > 0 and a > 0 are constants. Compute the reflection amplitude r(k) in this case
and deduce that there are quasi-stable bound states if U is large. Give expressions for the
wavefunctions and energies of these states and compute their lifetimes, working to leading
non-vanishing order in 1/U for each expression.

[ You may assume ψ = 0 for x > 0 and limǫ→0+{ψ′(−a+ǫ)− ψ′(−a−ǫ) } = U ψ(−a) . ]
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Paper 3, Section II

32A Applications of Quantum Mechanics
(a) A spinless charged particle moves in an electromagnetic field defined by vector

and scalar potentials A(x, t) and φ(x, t). The wavefunction ψ(x, t) for the particle satisfies
the time-dependent Schrödinger equation with Hamiltonian

Ĥ0 =
1

2m
(−i~∇+ eA) · (−i~∇+ eA) − eφ .

Consider a gauge transformation

A → Ã = A+∇f , φ → φ̃ = φ− ∂f

∂t
, ψ → ψ̃ = exp

(
− ief

~

)
ψ ,

for some function f(x, t). Define covariant derivatives with respect to space and time,
and show that ψ̃ satisfies the Schrödinger equation with potentials Ã and φ̃.

(b) Suppose that in part (a) the magnetic field has the form B = ∇×A = (0, 0, B),
where B is a constant, and that φ = 0. Find a suitable A with Ay = Az = 0 and determine
the energy levels of the Hamiltonian Ĥ0 when the z-component of the momentum of the
particle is zero. Suppose in addition that the particle is constrained to lie in a rectangular
region of area A in the (x, y)-plane. By imposing periodic boundary conditions in the
x-direction, estimate the degeneracy of each energy level. [You may use without proof
results for a quantum harmonic oscillator, provided they are clearly stated.]

(c) An electron is a charged particle of spin 1
2 with a two-component wavefunction

ψ(x, t) governed by the Hamiltonian

Ĥ = Ĥ0 I2 +
e~

2m
B · σ

where I2 is the 2×2 unit matrix and σ = (σ1, σ2, σ3) denotes the Pauli matrices. Find the
energy levels for an electron in the constant magnetic field defined in part (b), assuming
as before that the z-component of the momentum of the particle is zero.

Consider N such electrons confined to the rectangular region defined in part (b).
Ignoring interactions between the electrons, show that the ground state energy of this
system vanishes for N less than some integer Nmax which you should determine. Find the
ground state energy for N = (2p + 1)Nmax, where p is a positive integer.
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Paper 4, Section II

32A Applications of Quantum Mechanics
Let Λ ⊂ R2 be a Bravais lattice. Define the dual lattice Λ∗ and show that

V (x) =
∑

q∈Λ∗

Vq exp(iq · x)

obeys V (x + l) = V (x) for all l ∈ Λ, where Vq are constants. Suppose V (x) is the
potential for a particle of mass m moving in a two-dimensional crystal that contains a very
large number of lattice sites of Λ and occupies an area A. Adopting periodic boundary
conditions, plane-wave states |k 〉 can be chosen such that

〈x |k 〉 =
1

A1/2
exp (ik · x) and 〈k |k′ 〉 = δkk′ .

The allowed wavevectors k are closely spaced and include all vectors in Λ∗. Find an
expression for the matrix element 〈k |V (x) |k′ 〉 in terms of the coefficients Vq. [You need
not discuss additional details of the boundary conditions.]

Now suppose that V (x) = λU(x), where λ ≪ 1 is a dimensionless constant.
Find the energy E(k) for a particle with wavevector k to order λ2 in non-degenerate
perturbation theory. Show that this expansion in λ breaks down on the Bragg lines in
k-space defined by the condition

k · q =
1

2
|q|2 for q ∈ Λ∗ ,

and explain briefly, without additional calculations, the significance of this for energy levels
in the crystal.

Consider the particular case in which Λ has primitive vectors

a1 = 2π
(
i+

1√
3
j
)
, a2 = 2π

2√
3
j ,

where i and j are orthogonal unit vectors. Determine the polygonal region in k-space
corresponding to the lowest allowed energy band.
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Paper 2, Section II

33A Applications of Quantum Mechanics
A particle of mass m moves in three dimensions subject to a potential V (r) localised

near the origin. The wavefunction for a scattering process with incident particle of
wavevector k is denoted ψ(k, r). With reference to the asymptotic form of ψ, define
the scattering amplitude f(k,k′), where k′ is the wavevector of the outgoing particle with
|k′| = |k| = k.

By recasting the Schrödinger equation for ψ(k, r) as an integral equation, show that

f(k,k′) = − m

2π~2

∫
d3r′ exp(−ik′ · r′)V (r′)ψ(k, r′) .

[You may assume that

G(k; r) = − 1

4π|r| exp( ik|r| )

is the Green’s function for ∇2 + k2 which obeys the appropriate boundary conditions for
a scattering solution.]

Now suppose V (r) = λU(r), where λ ≪ 1 is a dimensionless constant. Determine
the first two non-zero terms in the expansion of f(k,k′) in powers of λ, giving each term
explicitly as an integral over one or more position variables r, r′, . . . .

Evaluate the contribution to f(k,k′) of order λ in the case U(r) = δ( |r| − a ),
expressing the answer as a function of a, k and the scattering angle θ (defined so that
k · k′ = k2 cos θ).
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Paper 3, Section II

24J Applied Probability
(a) State the thinning and superposition properties of a Poisson process on R+.

Prove the superposition property.

(b) A bi-infinite Poisson process (Nt : t ∈ R) with N0 = 0 is a process with
independent and stationary increments over R. Moreover, for all −∞ < s 6 t < ∞, the
increment Nt −Ns has the Poisson distribution with parameter λ(t− s). Prove that such
a process exists.

(c) Let N be a bi-infinite Poisson process on R of intensity λ. We identify it with
the set of points (Sn) of discontinuity of N , i.e., N [s, t] =

∑
n 1(Sn ∈ [s, t]). Show that if

we shift all the points of N by the same constant c, then the resulting process is also a
Poisson process of intensity λ.

Now suppose we shift every point of N by +1 or −1 with equal probability. Show
that the final collection of points is still a Poisson process of intensity λ. [You may assume
the thinning and superposition properties for the bi-infinite Poisson process.]
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Paper 2, Section II

25J Applied Probability
(a) Define an M/M/∞ queue and write without proof its stationary distribution.

State Burke’s theorem for an M/M/∞ queue.

(b) Let X be an M/M/∞ queue with arrival rate λ and service rate µ started from
the stationary distribution. For each t, denote by A1(t) the last time before t that a
customer departed the queue and A2(t) the first time after t that a customer departed
the queue. If there is no arrival before time t, then we set A1(t) = 0. What is the limit
as t→ ∞ of E[A2(t)−A1(t)]? Explain.

(c) Consider a system of N queues serving a finite number K of customers in the
following way: at station 1 6 i 6 N , customers are served immediately and the service
times are independent exponentially distributed with parameter µi; after service, each
customer goes to station j with probability pij > 0. We assume here that the system is
closed, i.e.,

∑
j pij = 1 for all 1 6 i 6 N .

Let S = {(n1, . . . , nN ) : ni ∈ N,
∑N

i=1 ni = K} be the state space of the Markov
chain. Write down its Q-matrix. Also write down the Q-matrix R corresponding to the
position in the network of one customer (that is, when K = 1). Show that there is a
unique distribution (λi)16i6N such that λR = 0. Show that

π(n) = CN

N∏

i=1

λni

i

ni!
, n = (n1, . . . , nN ) ∈ S,

defines an invariant measure for the chain. Are the queue lengths independent at
equilibrium?

Paper 4, Section II

25J Applied Probability
(a) Give the definition of a renewal process. Let (Nt)t>0 be a renewal process

associated with (ξi) with E ξ1 = 1/λ <∞. Show that almost surely

Nt

t
→ λ as t→ ∞.

(b) Give the definition of Kingman’s n-coalescent. Let τ be the first time that
all blocks have coalesced. Find an expression for E e−qτ . Let Ln be the total length
of the branches of the tree, i.e., if τi is the first time there are i lineages, then Ln =∑n

i=2 i(τi−1 − τi). Show that ELn ∼ 2 log n as n → ∞. Show also that Var(Ln) 6 C for
all n, where C is a positive constant, and that in probability

Ln

ELn
→ 1 as n→ ∞.
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Paper 1, Section II

26J Applied Probability
(a) Define a continuous-time Markov chain X with infinitesimal generator Q and

jump chain Y .

(b) Prove that if a state x is transient for Y , then it is transient for X.

(c) Prove or provide a counterexample to the following: if x is positive recurrent for
X, then it is positive recurrent for Y .

(d) Consider the continuous-time Markov chain (Xt)t>0 on Z with non-zero transi-
tion rates given by

q(i, i + 1) = 2 · 3|i|, q(i, i) = −3|i|+1 and q(i, i− 1) = 3|i|.

Determine whether X is transient or recurrent. Let T0 = inf{t > J1 : Xt = 0}, where J1
is the first jump time. Does X have an invariant distribution? Justify your answer.
Calculate E0[T0].

(e) Let X be a continuous-time random walk on Zd with q(x) = ‖x‖α ∧ 1 and
q(x, y) = q(x)/(2d) for all y ∈ Zd with ‖y − x‖ = 1. Determine for which values of α the
walk is transient and for which it is recurrent. In the recurrent case, determine the range
of α for which it is also positive recurrent. [Here ‖x‖ denotes the Euclidean norm of x.]

Part II, 2016 List of Questions [TURN OVER



14

Paper 3, Section II

28C Asymptotic Methods
Consider the integral

I(x) =

∫ 1

0

1√
t(1− t)

exp[ixf(t) ] dt

for real x > 0 , where f(t) = t2 + t. Find and sketch, in the complex t-plane, the paths of
steepest descent through the endpoints t = 0 and t = 1 and through any saddle point(s).
Obtain the leading order term in the asymptotic expansion of I(x) for large positive x.
What is the order of the next term in the expansion? Justify your answer.

Paper 2, Section II

29C Asymptotic Methods
What is meant by the asymptotic relation

f(z) ∼ g(z) as z → z0 , Arg (z − z0) ∈ (θ0, θ1) ?

Show that

sinh(z−1) ∼ 1

2
exp(z−1) as z → 0 , Arg z ∈ (−π/2, π/2) ,

and find the corresponding result in the sector Arg z ∈ (π/2, 3π/2).

What is meant by the asymptotic expansion

f(z) ∼
∞∑

j=0

cj(z − z0)
j as z → z0 , Arg (z − z0) ∈ (θ0, θ1) ?

Show that the coefficients {cj}∞j=0 are determined uniquely by f . Show that if f is analytic
at z0, then its Taylor series is an asymptotic expansion for f as z → z0 (for any Arg (z−z0)).

Show that

u(x, t) =

∫ ∞

−∞
exp(−ik2t+ ikx) f(k) dk

defines a solution of the equation i ∂tu + ∂2xu = 0 for any smooth and rapidly decreasing
function f . Use the method of stationary phase to calculate the leading-order behaviour
of u(λt, t) as t→ +∞, for fixed λ.
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Paper 4, Section II

29C Asymptotic Methods
Consider the equation

ǫ2
d2y

dx2
= Q(x)y , (1)

where ǫ > 0 is a small parameter and Q(x) is smooth. Search for solutions of the form

y(x) = exp

[
1

ǫ

(
S0(x) + ǫS1(x) + ǫ2S2(x) + · · ·

)]
,

and, by equating powers of ǫ, obtain a collection of equations for the {Sj(x)}∞j=0 which is
formally equivalent to (1). By solving explicitly for S0 and S1 derive the Liouville–Green
approximate solutions yLG(x) to (1).

For the case Q(x) = −V (x), where V (x) > V0 and V0 is a positive constant, consider
the eigenvalue problem

d2y

dx2
+ E V (x)y = 0 , y(0) = y(π) = 0 . (2)

Show that any eigenvalue E is necessarily positive. Solve the eigenvalue problem exactly
when V (x) = V0.

Obtain Liouville–Green approximate eigenfunctions yLGn (x) for (2) with E ≫ 1, and
give the corresponding Liouville–Green approximation to the eigenvalues ELG

n . Compare
your results to the exact eigenvalues and eigenfunctions in the case V (x) = V0, and
comment on this.
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Paper 4, Section I

4F Automata and Formal Languages
(a) Construct a register machine to compute the function f(m,n) := m+ n. State

the relationship between partial recursive functions and partial computable functions.
Show that the function g(m,n) := mn is partial recursive.

(b) State Rice’s theorem. Show that the set A := {n ∈ N | |Wn| > 7} is recursively
enumerable but not recursive.

Paper 3, Section I

4F Automata and Formal Languages
(a) Define what it means for a context-free grammar (CFG) to be in Chomsky

normal form (CNF). Can a CFG in CNF ever define a language containing ǫ? If GChom

denotes the result of converting an arbitrary CFG G into one in CNF, state the relationship
between L(G) and L(GChom).

(b) Let G be a CFG in CNF, and let w ∈ L(G) be a word of length |w| = n > 0.
Show that every derivation of w in G requires precisely 2n − 1 steps. Using this, give an
algorithm that, on input of any word v on the terminals of G, decides if v ∈ L(G) or not.

(c) Convert the following CFG G into a grammar in CNF:

S → aSb | SS | ǫ .

Does L(G) = L(GChom) in this case? Justify your answer.

Paper 2, Section I

4F Automata and Formal Languages
(a) Which of the following are regular languages? Justify your answers.

(i) {w ∈ {a, b}∗ | w is a nonempty string of alternating a’s and b’s}.

(ii) {wabw | w ∈ {a, b}∗}.

(b) Write down a nondeterministic finite-state automaton with ǫ-transitions which
accepts the language given by the regular expression (a+b)∗(bb+a)b. Describe in words
what this language is.

(c) Is the following language regular? Justify your answer.

{w ∈ {a, b}∗ | w does not end in ab or bbb}.
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Paper 1, Section I

4F Automata and Formal Languages
State the pumping lemma for context-free languages (CFLs). Which of the following

are CFLs? Justify your answers.

(i) {a2nb3n | n > 3}.

(ii) {a2nb3nc5n | n > 0}.

(iii) {ap | p is a prime}.

Let L,M be CFLs. Show that L ∪M is also a CFL.

Paper 3, Section II

11F Automata and Formal Languages
(a) Let D = (Q,Σ, δ, q0, F ) be a deterministic finite-state automaton. Define the

extended transition function δ̂ : Q × Σ∗ → Q, and the language accepted by D, denoted
L(D). Let u, v ∈ Σ∗, and p ∈ Q. Prove that δ̂(p, uv) = δ̂(δ̂(p, u), v).

(b) Let σ1, σ2, . . . , σk ∈ Σ where k > |Q|, and let p ∈ Q.

(i) Show that there exist 0 6 i < j 6 k such that δ̂(p, σ1 · · · σi) = δ̂(p, σ1 · · · σj),
where we interpret σ1 · · · σi as ǫ if i = 0.

(ii) Show that δ̂(p, σ1 · · · σiσj+1 · · · σk) = δ̂(p, σ1 · · · σk).

(iii) Show that δ̂(p, σ1 · · · σi(σi+1 · · · σj)tσj+1 · · · σk) = δ̂(p, σ1 · · · σk) for all t > 1.

(c) Prove the following version of the pumping lemma. Suppose w ∈ L(D), with
|w| > |Q|. Then w can be broken up into three words w = xyz such that y 6= ǫ, |xy| 6 |Q|,
and for all t > 0, the word xytz is also in L(D).

(d) Hence show that

(i) if L(D) contains a word of length at least |Q|, then it contains infinitely
many words;

(ii) if L(D) 6= ∅, then it contains a word of length less than |Q|;

(iii) if L(D) contains all words in Σ∗ of length less than |Q|, then L(D) = Σ∗.
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Paper 1, Section II

11F Automata and Formal Languages
(a) Define a recursive set and a recursively enumerable (r.e.) set. Prove that E ⊆ N

is recursive if and only if both E and N \ E are r.e.

(b) Define the halting set K. Prove that K is r.e. but not recursive.

(c) Let E1, E2, . . . , En be r.e. sets. Prove that
⋃n

i=1Ei and
⋂n

i=1Ei are r.e. Show
by an example that the union of infinitely many r.e. sets need not be r.e.

(d) Let E be a recursive set and f : N → N a (total) recursive function. Prove that
the set {f(n) | n ∈ E} is r.e. Is it necessarily recursive? Justify your answer.

[Any use of Church’s thesis in your answer should be explicitly stated.]
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Paper 4, Section I

8E Classical Dynamics
Using conservation of angular momentum L = Laea in the body frame, derive the

Euler equations for a rigid body:

I1 ω̇1 + (I3−I2)ω2 ω3 = 0, I2 ω̇2 + (I1−I3)ω3 ω1 = 0, I3 ω̇3 + (I2−I1)ω1 ω2 = 0.

[You may use the formula ėa = ω ∧ ea without proof.]

Assume that the principal moments of inertia satisfy I1 < I2 < I3. Determine
whether a rotation about the principal 3-axis leads to stable or unstable perturbations.

Paper 1, Section I

8E Classical Dynamics
Consider a one-parameter family of transformations qi(t) 7→ Qi(s, t) such that

Qi(0, t) = qi(t) for all time t, and

∂

∂s
L(Qi, Q̇i, t) = 0 ,

where L is a Lagrangian and a dot denotes differentiation with respect to t. State and
prove Noether’s theorem.

Consider the Lagrangian

L =
1

2
( ẋ2 + ẏ2 + ż2 ) − V (x+y, y+z ) ,

where the potential V is a function of two variables. Find a continuous symmetry of this
Lagrangian and construct the corresponding conserved quantity. Use the Euler–Lagrange
equations to explicitly verify that the function you have constructed is independent of t.
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Paper 2, Section I

8E Classical Dynamics
Consider the Lagrangian

L = A( θ̇2 + φ̇2 sin2 θ ) +B( ψ̇ + φ̇ cos θ )2 − C(cos θ)k ,

where A, B, C are positive constants and k is a positive integer. Find three conserved
quantities and show that u = cos θ satisfies

u̇2 = f(u) ,

where f(u) is a polynomial of degree k+2 which should be determined.

Paper 3, Section I

8E Classical Dynamics
Consider a six-dimensional phase space with coordinates (qi, pi) for i = 1, 2, 3.

Compute the Poisson brackets {Li, Lj}, where Li = ǫijk qj pk.

Consider the Hamiltonian

H =
1

2
|p|2 + V ( |q| )

and show that the resulting Hamiltonian system admits three Poisson-commuting inde-
pendent first integrals.

Paper 2, Section II

13E Classical Dynamics
Define what it means for the transformation R2n → R2n given by

(qi, pi) 7→
(
Qi(qj, pj), Pi(qj , pj)

)
, i, j = 1, . . . , n

to be canonical . Show that a transformation is canonical if and only if

{Qi, Qj} = 0 , {Pi, Pj} = 0 , {Qi, Pj} = δij .

Show that the transformation R2 → R2 given by

Q = q cos ǫ− p sin ǫ , P = q sin ǫ+ p cos ǫ

is canonical for any real constant ǫ. Find the corresponding generating function.
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Paper 4, Section II

14E Classical Dynamics
A particle of unit mass is attached to one end of a light, stiff rod of length ℓ. The

other end of the rod is held at a fixed position, such that the rod is free to swing in
any direction. Write down the Lagrangian for the system giving a clear definition of any
angular variables you introduce. [You should assume the acceleration g is constant.]

Find two independent constants of the motion.

The particle is projected horizontally with speed v from a point where the rod lies
at an angle α to the downward vertical, with 0 < α < π/2. In terms of ℓ, g and α, find
the critical speed vc such that the particle always remains at its initial height.

The particle is now projected horizontally with speed vc but from a point at angle
α + δα to the vertical, where δα/α ≪ 1. Show that the height of the particle oscillates,
and find the period of oscillation in terms of ℓ, g and α.
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Paper 1, Section I

3G Coding and Cryptography
Find the average length of an optimum decipherable binary code for a source that

emits five words with probabilities

0.25, 0.15, 0.15, 0.2, 0.25.

Show that, if a source emits N words (with N > 2), and if l1, . . . , lN are the lengths of
the codewords in an optimum encoding over the binary alphabet, then

l1 + · · ·+ lN 6
1

2
(N2 +N − 2).

[You may assume that an optimum encoding can be given by a Huffman encoding.]

Paper 2, Section I

3G Coding and Cryptography
Show that the binary channel with channel matrix

(
1 0
1
2

1
2

)

has capacity log 5− 2.

Paper 3, Section I

3G Coding and Cryptography
Describe in words the unicity distance of a cryptosystem.

Denote the cryptosystem by 〈M,K,C〉, in the usual way, and let m ∈M and k ∈ K
be random variables and c = e(m,k). The unicity distance U is formally defined to be the
least n > 0 such that H(k|c(n)) = 0. Derive the formula

U =
log |K|

log |Σ| −H
,

where H = H(m), and Σ is the alphabet of the ciphertext. Make clear any assumptions
you make.

The redundancy of a language is given by R = 1 − H
log |Σ| . If a language has zero

redundancy what is the unicity of any cryptosystem?
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Paper 4, Section I

3G Coding and Cryptography
Describe the Rabin–Williams scheme for coding a message x as x2 modulo a certain

N . Show that, if N is chosen appropriately, breaking this code is equivalent to factorising
the product of two primes.

Paper 1, Section II

10G Coding and Cryptography
What does it mean to say a binary code C has length n, size m and minimum

distance d?

Let A(n, d) be the largest value of m for which there exists an [n,m, d]-code. Prove
that

2n

V (n, d− 1)
6 A(n, d) 6

2n

V (n, ⌊(d− 1)/2⌋) ,

where

V (n, r) =

r∑

j=0

(
n

j

)
.

Another bound for A(n, d) is the Singleton bound given by

A(n, d) 6 2n−d+1.

Prove the Singleton bound and give an example of a linear code of length n > 1 that
satisfies A(n, d) = 2n−d+1.

Paper 2, Section II

11G Coding and Cryptography
Define a BCH code of length n, where n is odd, over the field of 2 elements with

design distance δ. Show that the minimum weight of such a code is at least δ. [Results
about the Vandermonde determinant may be quoted without proof, provided they are
stated clearly.]

Let ω ∈ F16 be a root of X4 + X + 1. Let C be the BCH code of length 15
with defining set {ω, ω2, ω3, ω4}. Find the generator polynomial of C and the rank of C.
Determine the error positions of the following received words:

(i) r(X) = 1 +X6 +X7 +X8,

(ii) r(X) = 1 +X +X4 +X5 +X6 +X9.
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Paper 1, Section I

9C Cosmology
The expansion scale factor, a(t), for an isotropic and spatially homogeneous universe

containing material with pressure p and mass density ρ obeys the equations

ρ̇ + 3(ρ+ p)
ȧ

a
= 0 ,

( ȧ
a

)2
=

8πGρ

3
− k

a2
+

Λ

3
,

where the speed of light is set equal to unity, G is Newton’s constant, k is a constant equal
to 0 or ±1, and Λ is the cosmological constant. Explain briefly the interpretation of these
equations.

Show that these equations imply

ä

a
= −4πG(ρ+ 3p)

3
+

Λ

3
.

Hence show that a static solution with constant a = as exists when p = 0 if

Λ = 4πGρ =
k

a2s
.

What must the value of k be, if the density ρ is non-zero?

Paper 2, Section I

9C Cosmology
A spherical cloud of mass M has radius r(t) and initial radius r(0) = R. It contains

material with uniform mass density ρ(t), and zero pressure. Ignoring the cosmological
constant, show that if it is initially at rest at t = 0 and the subsequent gravitational
collapse is governed by Newton’s law r̈ = −GM/r2, then

ṙ2 = 2GM
(1
r
− 1

R

)
.

Suppose r is given parametrically by

r = R cos2 θ ,

where θ = 0 at t = 0. Derive a relation between θ and t and hence show that the cloud
collapses to radius r = 0 at

t =

√
3π

32Gρ0
,

where ρ0 is the initial mass density of the cloud.
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Paper 3, Section I

9C Cosmology
A universe contains baryonic matter with background density ρB(t) and density

inhomogeneity δB(x, t), together with non-baryonic dark matter with background density
ρD(t) and density inhomogeneity δD(x, t). After the epoch of radiation–matter density
equality, teq, the background dynamics are governed by

H =
2

3t
and ρD =

1

6πGt2
,

where H is the Hubble parameter.

The dark-matter density is much greater than the baryonic density (ρD ≫ ρB) and
so the time-evolution of the coupled density perturbations, at any point x, is described by
the equations

δ̈B + 2Hδ̇B = 4πGρD δD ,

δ̈D + 2Hδ̇D = 4πGρD δD .

Show that
δD =

α

t
+ β t2/3 ,

where α and β are independent of time. Neglecting modes in δD and δB that decay with
increasing time, show that the baryonic density inhomogeneity approaches

δB = β t2/3 + γ ,

where γ is independent of time.

Briefly comment on the significance of your calculation for the growth of baryonic
density inhomogeneities in the early universe.
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Paper 4, Section I

9C Cosmology
The external gravitational potential Φ(r) due to a thin spherical shell of radius a

and mass per unit area σ, centred at r = 0, will equal the gravitational potential due to
a point mass M at r = 0, at any distance r > a, provided

MrΦ(r)

2πσa
+K(a)r =

∫ r+a

r−a
RΦ(R) dR , (∗)

where K(a) depends on the radius of the shell. For which values of q does this equation
have solutions of the form Φ(r) = Crq, where C is constant? Evaluate K(a) in each case
and find the relation between the mass of the shell and M .

Hence show that the general gravitational force

F (r) =
A

r2
+Br

has a potential satisfying (∗). What is the cosmological significance of the constant B?
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Paper 3, Section II

13C Cosmology
The early universe is described by equations (with units such that c = 8πG = ~ = 1)

3H2 = ρ , ρ̇+ 3H(ρ+ p) = 0 , (1)

whereH = ȧ/a. The universe contains only a self-interacting scalar field φ with interaction
potential V (φ) so that the density and pressure are given by

ρ =
1

2
φ̇2 + V (φ) ,

p =
1

2
φ̇2 − V (φ) .

Show that
φ̈ + 3Hφ̇ + V ′(φ) = 0 . (2)

Explain the slow-roll approximation and apply it to equations (1) and (2) to show
that it leads to

√
3

∫ √
V

V ′
dφ = − t + const.

If V (φ) = 1
4λφ

4 with λ a positive constant and φ(0) = φ0, show that

φ(t) = φ0 exp

[
−
√

4λ

3
t

]

and that, for small t, the scale factor a(t) expands to leading order in t as

a(t) ∝ exp

[ √
λ

12
φ20 t

]
.

Comment on the relevance of this result for inflationary cosmology.

Part II, 2016 List of Questions [TURN OVER



28

Paper 1, Section II

14C Cosmology
The distribution function f(x,p, t) gives the number of particles in the universe with

position in (x,x + δx) and momentum in (p,p+ δp) at time t. It satisfies the boundary
condition that f → 0 as |x| → ∞ and as |p| → ∞. Its evolution obeys the Boltzmann
equation

∂f

∂t
+
∂f

∂p
· dp
dt

+
∂f

∂x
· dx
dt

=

[
df

dt

]

col

,

where the collision term
[
df
dt

]
col

describes any particle production and annihilation that
occurs.

The universe expands isotropically and homogeneously with expansion scale factor
a(t), so the momenta evolve isotropically with magnitude p ∝ a−1. Show that the
Boltzmann equation simplifies to

∂f

∂t
− ȧ

a
p · ∂f

∂p
=

[
df

dt

]

col

. (∗)

The number densities n of particles and n̄ of antiparticles are defined in terms of
their distribution functions f and f̄ , and momenta p and p̄, by

n =

∫ ∞

0
f 4πp2 dp and n̄ =

∫ ∞

0
f̄ 4πp̄2 dp̄ ,

and the collision term may be assumed to be of the form

[
df

dt

]

col

= −〈σv〉
∫ ∞

0
f̄ f 4πp̄2 dp̄+R

where 〈σv〉 determines the annihilation cross-section of particles by antiparticles and R is
the production rate of particles.

By integrating equation (∗) with respect to the momentum p and assuming that
〈σv〉 is a constant, show that

dn

dt
+ 3

ȧ

a
n = −〈σv〉nn̄+Q ,

where Q =
∫∞
0 R 4πp2 dp. Assuming the same production rate R for antiparticles, write

down the corresponding equation satisfied by n̄ and show that

(n − n̄)a3 = constant .
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Paper 3, Section II

22G Differential Geometry
Explain what it means for an embedded surface S in R3 to be minimal. What

is meant by an isothermal parametrization φ : U → V ⊂ R3 of an embedded surface
V ⊂ R3? Prove that if φ is isothermal then φ(U) is minimal if and only if the components
of φ are harmonic functions on U . [You may assume the formula for the mean curvature
of a parametrized embedded surface,

H =
eG− 2fF + gE

2(EG − F 2)
,

where E,F,G (respectively e, f, g) are the coefficients of the first (respectively second)
fundamental forms.]

Let S be an embedded connected minimal surface in R3 which is closed as a subset
of R3, and let Π ⊂ R3 be a plane which is disjoint from S. Assuming that local isothermal
parametrizations always exist, show that if the Euclidean distance between S and Π is
attained at some point P ∈ S, i.e. d(P,Π) = infQ∈S d(Q,Π), then S is a plane parallel to
Π.

Paper 4, Section II

23G Differential Geometry
For S ⊂ R3 a smooth embedded surface, define what is meant by a geodesic curve

on S. Show that any geodesic curve γ(t) has constant speed |γ̇(t)|.
For any point P ∈ S, show that there is a parametrization φ : U → V of some open

neighbourhood V of P in S, with U ⊂ R2 having coordinates (u, v), for which the first
fundamental form is

du2 +G(u, v)dv2,

for some strictly positive smooth function G on U . State a formula for the Gaussian
curvature K of S in V in terms of G. If K ≡ 0 on V , show that G is a function of v only,
and that we may reparametrize so that the metric is locally of the form du2 + dw2, for
appropriate local coordinates (u,w).

[You may assume that for any P ∈ S and nonzero ξ ∈ TPS, there exists (for some
ǫ > 0) a unique geodesic γ : (−ǫ, ǫ) → S with γ(0) = P and γ̇(0) = ξ, and that such
geodesics depend smoothly on the initial conditions P and ξ.]
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Paper 2, Section II

23G Differential Geometry
If an embedded surface S ⊂ R3 contains a line L, show that the Gaussian curvature

is non-positive at each point of L. Give an example where the Gaussian curvature is zero
at each point of L.

Consider the helicoid S given as the image of R2 in R3 under the map

φ(u, v) = (sinh v cosu, sinh v sinu, u).

What is the image of the corresponding Gauss map? Show that the Gaussian curvature
at a point φ(u, v) ∈ S is given by −1/ cosh4 v, and hence is strictly negative everywhere.
Show moreover that there is a line in S passing through any point of S.

[General results concerning the first and second fundamental forms on an oriented
embedded surface S ⊂ R3 and the Gauss map may be used without proof in this question.]

Paper 1, Section II

24G Differential Geometry
Define what is meant by the regular values and critical values of a smooth map

f : X → Y of manifolds. State the Preimage Theorem and Sard’s Theorem.

Suppose now that dimX = dimY . If X is compact, prove that the set of regular
values is open in Y , but show that this may not be the case if X is non-compact.

Construct an example with dimX = dimY and X compact for which the set of
critical values is not a submanifold of Y .

[Hint: You may find it helpful to consider the case X = S1 and Y = R. Properties
of bump functions and the function e−1/x2

may be assumed in this question.]
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Paper 3, Section II

29E Dynamical Systems
Consider the dependence of the system

ẋ = (a− x2)(a2 − y) ,

ẏ = x− y

on the parameter a. Find the fixed points and plot their location in the (a, x)-plane.
Hence, or otherwise, deduce that there are bifurcations at a = 0 and a = 1.

Investigate the bifurcation at a = 1 by making the substitutions u = x−1, v = y−1
and µ = a − 1. Find the extended centre manifold in the form v(u, µ) correct to second
order. Find the evolution equation on the extended centre manifold to second order, and
determine the stability of its fixed points.

Use a plot to show which branches of fixed points in the (a, x)-plane are stable and
which are unstable, and state, without calculation, the type of bifurcation at a = 0. Hence
sketch the structure of the (x, y) phase plane very close to the origin for |a| ≪ 1 in the
cases (i) a < 0 and (ii) a > 0.

Paper 1, Section II

29E Dynamical Systems
Consider the dynamical system

ẋ = x(y − a) ,

ẏ = 1− x− y2 ,

where −1 < a < 1. Find and classify the fixed points of the system.

Use Dulac’s criterion with a weighting function of the form φ = xp and a suitable
choice of p to show that there are no periodic orbits for a 6= 0. For the case a = 0 use
the same weighting function to find a function V (x, y) which is constant on trajectories.
[Hint: φẋ is Hamiltonian.]

Calculate the stable manifold at (0,−1) correct to quadratic order in x.

Sketch the phase plane for the cases (i) a = 0 and (ii) a = 1
2 .
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30E Dynamical Systems
Consider the map defined on R by

F (x) =

{
3x x 6 1

2

3(1− x) x > 1
2

and let I be the open interval (0, 1). Explain what it means for F to have a horseshoe on
I by identifying the relevant intervals in the definition.

Let Λ = {x : Fn(x) ∈ I,∀n > 0}. Show that F (Λ) = Λ.

Find the sets Λ1 = {x : F (x) ∈ I} and Λ2 = {x : F 2(x) ∈ I}.
Consider the ternary (base-3) representation x = 0 · x1x2x3 . . . of numbers in I.

Show that

F (0 · x1x2x3 . . . ) =
{
x1 · x2x3x4 . . . x 6 1

2

σ(x1) · σ(x2)σ(x3)σ(x4) . . . x > 1
2

,

where the function σ(xi) of the ternary digits should be identified. What is the ternary
representation of the non-zero fixed point? What do the ternary representations of
elements of Λ have in common?

Show that F has sensitive dependence on initial conditions on Λ, that F is
topologically transitive on Λ, and that periodic points are dense in Λ. [Hint: You may
assume that Fn(0 · x1 . . . xn−10xn+1xn+2 . . . ) = 0 · xn+1xn+2 . . . for x ∈ Λ.]

Briefly state the relevance of this example to the relationship between Glendinning’s
and Devaney’s definitions of chaos.
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Paper 2, Section II

30E Dynamical Systems
Consider the nonlinear oscillator

ẋ = y − µx(12 |x| − 1) ,

ẏ = −x .

(a) Use the Hamiltonian for µ = 0 to find a constraint on the size of the domain of
stability of the origin when µ < 0.

(b) Assume that given µ > 0 there exists an R such that all trajectories eventually
remain within the region |x| 6 R. Show that there must be a limit cycle, stating carefully
any result that you use. [You need not show that there is only one periodic orbit.]

(c) Use the energy-balance method to find the approximate amplitude of the limit
cycle for 0 < µ≪ 1.

(d) Find the approximate shape of the limit cycle for µ ≫ 1, and calculate the
leading-order approximation to its period.
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Paper 1, Section II

34E Electrodynamics
A point particle of charge q and mass m moves in an electromagnetic field with

4-vector potential Aµ(x), where x
µ is position in spacetime. Consider the action

S = −mc
∫ (

−ηµν
dxµ

dλ

dxν

dλ

)1/2
dλ + q

∫
Aµ

dxµ

dλ
dλ , (∗)

where λ is an arbitrary parameter along the particle’s worldline and ηµν = diag(−1,+1,+1,+1)
is the Minkowski metric.

(a) By varying the action with respect to xµ(λ), with fixed endpoints, obtain the
equation of motion

m
duµ

dτ
= qFµ

νu
ν ,

where τ is the proper time, uµ = dxµ/dτ is the velocity 4-vector, and Fµν = ∂µAν − ∂νAµ

is the field strength tensor.

(b) This particle moves in the field generated by a second point charge Q that is
held at rest at the origin of some inertial frame. By choosing a suitable expression for Aµ

and expressing the first particle’s spatial position in spherical polar coordinates (r, θ, φ),
show from the action (∗) that

E ≡ ṫ− Γ/r ,

ℓc ≡ r2φ̇ sin2 θ

are constants, where Γ = −qQ/(4πǫ0mc2) and overdots denote differentiation with respect
to τ .

(c) Show that when the motion is in the plane θ = π/2,

E +
Γ

r
=

√
1 +

ṙ2

c2
+
ℓ2

r2
.

Hence show that the particle’s orbit is bounded if E < 1, and that the particle can reach
the origin in finite proper time if Γ > |ℓ|.
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Paper 3, Section II

34E Electrodynamics
The current density in an antenna lying along the z-axis takes the form

J(t,x) =

{
ẑ I0 sin (kd− k|z|) e−iωtδ(x)δ(y) |z| 6 d

0 |z| > d
,

where I0 is a constant and ω = ck. Show that at distances r = |x| for which both r ≫ d
and r ≫ kd2/(2π), the retarded vector potential in Lorenz gauge is

A(t,x) ≈ ẑ
µ0I0
4πr

e−iω(t−r/c)

∫ d

−d
sin
(
kd− k|z′|

)
e−ikz′ cos θ dz′ ,

where cos θ = r̂ · ẑ and r̂ = x/|x|. Evaluate the integral to show that

A(t,x) ≈ ẑ
µ0I0
2πkr

(
cos(kd cos θ)− cos(kd)

sin2 θ

)
e−iω(t−r/c) .

In the far-field, where kr ≫ 1, the electric and magnetic fields are given by

E(t,x) ≈ −iωr̂× [r̂×A(t,x)]

B(t,x) ≈ ikr̂×A(t,x) .

By calculating the Poynting vector, show that the time-averaged power radiated per unit
solid angle is

dP
dΩ

=
cµ0I

2
0

8π2

(
cos(kd cos θ)− cos(kd)

sin θ

)2
.

[You may assume that in Lorenz gauge, the retarded potential due to a localised current
distribution is

A(t,x) =
µ0
4π

∫
J(tret,x

′)

|x− x′| d3x′ ,

where the retarded time tret = t− |x− x′|/c.]
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34E Electrodynamics
(a) A uniform, isotropic dielectric medium occupies the half-space z > 0. The region

z < 0 is in vacuum. State the boundary conditions that should be imposed on E, D, B
and H at z = 0.

(b) A linearly polarized electromagnetic plane wave, with magnetic field in the
(x, y)-plane, is incident on the dielectric from z < 0. The wavevector k makes an acute
angle θI to the normal ẑ. If the dielectric has frequency-independent relative permittivity
ǫr, show that the fraction of the incident power that is reflected is

R =

(
n cos θI − cos θT
n cos θI + cos θT

)2

,

where n =
√
ǫr, and the angle θT should be specified. [You should ignore any magnetic

response of the dielectric.]

(c) Now suppose that the dielectric moves at speed βc along the x-axis, the incident
angle θI = 0, and the magnetic field of the incident radiation is along the y-direction.
Show that the reflected radiation propagates normal to the surface z = 0, has the same
frequency as the incident radiation, and has magnetic field also along the y-direction.
[Hint: You may assume that under a standard Lorentz boost with speed v = βc along the
x-direction, the electric and magnetic field components transform as




E′
x

E′
y

E′
z


 =




Ex

γ(Ey − vBz)
γ(Ez + vBy)


 and




B′
x

B′
y

B′
z


 =




Bx

γ(By + vEz/c
2)

γ(Bz − vEy/c
2)


 ,

where γ = (1− β2)−1/2.]

(d) Show that the fraction of the incident power reflected from the moving dielectric
is

Rβ =

(
n/γ −

√
1− β2/n2

n/γ +
√

1− β2/n2

)2

.
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36B Fluid Dynamics II
A thin layer of fluid of viscosity µ occupies the gap between a rigid flat plate at y = 0

and a flexible no-slip boundary at y = h(x, t). The flat plate moves with constant velocity
Uex and the flexible boundary moves with no component of velocity in the x-direction.

State the two-dimensional lubrication equations governing the dynamics of the thin
layer of fluid. Given a pressure gradient dp/dx, solve for the velocity profile u(x, y, t) in
the fluid and calculate the flux q(x, t). Deduce that the pressure gradient satisfies

∂

∂x

(
h3

12µ

dp

dx

)
=
∂h

∂t
+
U

2

∂h

∂x
.

The shape of the flexible boundary is a periodic travelling wave, i.e. h(x, t) =
h(x− ct) and h(ξ + L) = h(ξ), where c and L are constants. There is no applied average
pressure gradient, so the pressure is also periodic with p(ξ + L) = p(ξ). Show that

dp

dx
= 6µ (U − 2c)

(
1

h2
− 〈h−2〉

〈h−3〉
1

h3

)
,

where 〈...〉 =
1

L

∫ L

0
... dx denotes the average over a period. Calculate the shear stress

σxy on the plate.

The speed U is such that there is no need to apply an external tangential force to
the plate in order to maintain its motion. Show that

U = 6c
〈h−2〉〈h−2〉 − 〈h−1〉〈h−3〉

3〈h−2〉〈h−2〉 − 4〈h−1〉〈h−3〉 .
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36B Fluid Dynamics II
A cylindrical pipe of radius a and length L ≫ a contains two viscous fluids arranged

axisymmetrically with fluid 1 of viscosity µ1 occupying the central region r < βa, where
0 < β < 1, and fluid 2 of viscosity µ2 occupying the surrounding annular region βa < r < a.
The flow in each fluid is assumed to be steady and unidirectional, with velocities u1(r)ez
and u2(r)ez respectively, with respect to cylindrical coordinates (r, θ, z) aligned with the
pipe. A fixed pressure drop ∆p is applied between the ends of the pipe.

Starting from the Navier–Stokes equations, derive the equations satisfied by u1(r)
and u2(r), and state all the boundary conditions. Show that the pressure gradient is
constant.

Solve for the velocity profile in each fluid and calculate the corresponding flow rates,
Q1 and Q2.

Derive the relationship between β and µ2/µ1 that yields the same flow rate in each
fluid. Comment on the behaviour of β in the limits µ2/µ1 ≫ 1 and µ2/µ1 ≪ 1, illustrating
your comment by sketching the flow profiles.
[
Hint: In cylindrical coordinates (r, θ, z),

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
+
∂2u

∂z2
, erz =

1

2

(
∂ur
∂z

+
∂uz
∂r

)
.
]
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36B Fluid Dynamics II
For a two-dimensional flow in plane polar coordinates (r, θ), state the relationship

between the streamfunction ψ(r, θ) and the flow components ur and uθ. Show that the
vorticity ω is given by ω = −∇2ψ, and deduce that the streamfunction for a steady
two-dimensional Stokes flow satisfies the biharmonic equation

∇4ψ = 0 .

A rigid stationary circular disk of radius a occupies the region r 6 a. The flow far
from the disk tends to a steady straining flow u∞ = (−Ex,Ey), where E is a constant.
Inertial forces may be neglected. Calculate the streamfunction, ψ∞(r, θ), for the far-field
flow.

By making an appropriate assumption about its dependence on θ, find the stream-
function ψ for the flow around the disk, and deduce the flow components, ur(r, θ) and
uθ(r, θ).

Calculate the tangential surface stress, σrθ, acting on the boundary of the disk.
[
Hints: In plane polar coordinates (r, θ),

∇ · u =
1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

, ω =
1

r

∂(ruθ)

∂r
− 1

r

∂ur
∂θ

,

∇2V =
1

r

∂

∂r

(
r
∂V

∂r

)
+

1

r2
∂2V

∂θ2
, erθ =

1

2

(
r
∂

∂r

(uθ
r

)
+

1

r

∂ur
∂θ

)
.
]
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36B Fluid Dynamics II
State the vorticity equation and interpret the meaning of each term.

A planar vortex sheet is diffusing in the presence of a perpendicular straining flow.
The flow is everywhere of the form u = (U(y, t),−Ey,Ez), where U → ±U0 as y → ±∞,
and U0 and E > 0 are constants. Show that the vorticity has the form ω = ω(y, t)ez , and
obtain a scalar equation describing the evolution of ω.

Explain physically why the solution approaches a steady state in which the vorticity
is concentrated near y = 0. Use scaling to estimate the thickness δ of the steady vorticity
layer as a function of E and the kinematic viscosity ν.

Determine the steady vorticity profile, ω(y), and the steady velocity profile, U(y).
[
Hint: erf(x) =

2√
π

∫ x

0
e−u2

du.
]

State, with a brief physical justification, why you might expect this steady flow to
be unstable to long-wavelength perturbations, defining what you mean by long.
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7A Further Complex Methods
Consider the equation for w(z):

w′′ + p(z)w′ + q(z)w = 0 . (∗)

State necessary and sufficient conditions on p(z) and q(z) for z = 0 to be (i) an ordinary
point or (ii) a regular singular point . Derive the corresponding conditions for the point
z = ∞.

Determine the most general equation of the form (∗) that has regular singular points
at z = 0 and z = ∞, with all other points being ordinary.

Paper 3, Section I

7A Further Complex Methods
The functions f(x) and g(x) have Laplace transforms F (p) and G(p) respectively,

and f(x) = g(x) = 0 for x 6 0. The convolution h(x) of f(x) and g(x) is defined by

h(x) =

∫ x

0
f(y) g(x−y) dy for x > 0 and h(x) = 0 for x 6 0 .

Express the Laplace transform H(p) of h(x) in terms of F (p) and G(p).

Now suppose that f(x) = xα and g(x) = xβ for x > 0, where α, β > −1. Find
expressions for F (p) and G(p) by using a standard integral formula for the Gamma
function. Find an expression for h(x) by using a standard integral formula for the Beta
function. Hence deduce that

Γ(z)Γ(w)

Γ(z + w)
= B(z, w)

for all Re(z) > 0, Re(w) > 0.

Paper 1, Section I

7A Further Complex Methods
Evaluate the integral

f(p) = P
∫ ∞

−∞
dx

eipx

x4 − 1
,

where p is a real number, for (i) p > 0 and (ii) p < 0.
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7A Further Complex Methods
The Euler product formula for the Gamma function is

Γ(z) = lim
n→∞

n! nz

z(z + 1) . . . (z + n)
.

Use this to show that
Γ(2z)

22z Γ(z) Γ(z + 1
2)

= c ,

where c is a constant, independent of z. Find the value of c.

Paper 2, Section II

12A Further Complex Methods
The Hurwitz zeta function ζH(s, q) is defined for Re(q) > 0 by

ζH(s, q) =
∞∑

n=0

1

(q + n)s
.

State without proof the complex values of s for which this series converges.

Consider the integral

I(s, q) =
Γ(1− s)

2πi

∫

C
dz

zs−1 e qz

1− e z

where C is the Hankel contour. Show that I(s, q) provides an analytic continuation of
the Hurwitz zeta function for all s 6= 1. Include in your account a careful discussion of
removable singularities. [Hint: Γ(s) Γ(1− s) = π/ sin(πs).]

Show that I(s, q) has a simple pole at s = 1 and find its residue.
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13A Further Complex Methods
(a) Legendre’s equation for w(z) is

(z2 − 1)w′′ + 2zw′ − ℓ(ℓ+ 1)w = 0 , where ℓ = 0, 1, 2, . . . .

Let C be a closed contour. Show by direct substitution that for z within C
∫

C
dt

(t2 − 1)ℓ

(t− z)ℓ+1

is a non-trivial solution of Legendre’s equation.

(b) Now consider

Qν(z) =
1

4i sin νπ

∫

C′

dt
(t2 − 1)ν

(t− z)ν+1

for real ν > −1 and ν 6= 0, 1, 2, . . . . The closed contour C′ is defined to start at the
origin, wind around t = 1 in a counter-clockwise direction, then wind around t = −1 in
a clockwise direction, then return to the origin, without encircling the point z. Assuming
that z does not lie on the real interval −1 6 x 6 1, show by deforming C′ onto this interval
that functions Qℓ(z) may be defined as limits of Qν(z) with ν → ℓ = 0, 1, 2, . . . .

Find an explicit expression for Q0(z) and verify that it satisfies Legendre’s equation
with ℓ = 0.
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16H Galois Theory
(a) Let K ⊆ L be a finite separable field extension. Show that there exist only

finitely many intermediate fields K ⊆ F ⊆ L.

(b) Define what is meant by a normal extension. Is Q ⊆ Q(
√

1 +
√
7) a normal

extension? Justify your answer.

(c) Prove Artin’s lemma, which states: if K ⊆ L is a field extension, H is a finite
subgroup of AutK(L), and F := LH is the fixed field of H, then F ⊆ L is a Galois
extension with Gal(L/F ) = H.

Paper 3, Section II

16H Galois Theory
(a) Let L be the 13th cyclotomic extension of Q, and let µ be a 13th primitive root of

unity. What is the minimal polynomial of µ over Q? What is the Galois group Gal(L/Q)?
Put λ = µ+ 1

µ . Show that Q ⊆ Q(λ) is a Galois extension and find Gal(Q(λ)/Q).

(b) Define what is meant by a Kummer extension. Let K be a field of characteristic
zero and let L be the nth cyclotomic extension of K. Show that there is a sequence of
Kummer extensions K = F1 ⊆ F2 ⊆ · · · ⊆ Fr such that L is contained in Fr.

Paper 1, Section II

17H Galois Theory
(a) Prove that if K is a field and f ∈ K[t], then there exists a splitting field L of f

over K. [You do not need to show uniqueness of L.]

(b) Let K1 and K2 be algebraically closed fields of the same characteristic. Show
that either K1 is isomorphic to a subfield of K2 or K2 is isomorphic to a subfield of K1.
[For subfields Fi of K1 and field homomorphisms ψi : Fi → K2 with i = 1, 2, we say
(F1, ψ1) 6 (F2, ψ2) if F1 is a subfield of F2 and ψ2|F1

= ψ1. You may assume the existence
of a maximal pair (F,ψ) with respect to the partial order just defined.]

(c) Give an example of a finite field extension K ⊆ L such that there exist
α, β ∈ L \K where α is separable over K but β is not separable over K.
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17H Galois Theory
(a) Let f = t5 − 9t + 3 ∈ Q[t] and let L be the splitting field of f over Q. Show

that Gal(L/Q) is isomorphic to S5. Let α be a root of f . Show that Q ⊆ Q(α) is neither
a radical extension nor a solvable extension.

(b) Let f = t26 + 2 and let L be the splitting field of f over Q. Is it true that
Gal(L/Q) has an element of order 29? Justify your answer. Using reduction mod p
techniques, or otherwise, show that Gal(L/Q) has an element of order 3.

[Standard results from the course may be used provided they are clearly stated.]
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Paper 4, Section II

35D General Relativity
A spherically symmetric static spacetime has metric

ds2 = −
(
1 + r2/b2

)
dt2 +

dr2

1 + r2/b2
+ r2

(
dθ2 + sin2 θ dφ2

)

where −∞ < t <∞, r > 0, b is a positive constant, and units such that c = 1 are used.

(a) Explain why a time-like geodesic may be assumed, without loss of generality, to
lie in the equatorial plane θ = π/2. For such a geodesic, show that the quantities

E = (1 + r2/b2) ṫ and h = r2φ̇

are constants of the motion, where a dot denotes differentiation with respect to proper
time, τ . Hence find a first-order differential equation for r(τ).

(b) Consider a massive particle fired from the origin, r = 0. Show that the particle
will return to the origin and find the proper time taken.

(c) Show that circular orbits r = a are possible for any a > 0 and determine whether
such orbits are stable. Show that on any such orbit a clock measures coordinate time.
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Paper 1, Section II

35D General Relativity
Consider a family of geodesics with s an affine parameter and V a the tangent vector

on each curve. The equation of geodesic deviation for a vector field W a is

D2W a

Ds2
= Ra

bcdV
bV cW d , (∗)

where
D

Ds
denotes the directional covariant derivative V b∇b.

(i) Show that if

V b ∂W
a

∂xb
= W b ∂V

a

∂xb

then W a satisfies (∗).

(ii) Show that V a and sV a satisfy (∗).

(iii) Show that if W a is a Killing vector field, meaning that ∇bWa + ∇aWb = 0, then
W a satisfies (∗).

(iv) Show that if W a = wUa satisfies (∗), where w is a scalar field and Ua is a time-like
unit vector field, then

d2w

ds2
= (Ω2 −K)w ,

where Ω2 = −DU
a

Ds

DUa

Ds
and K = Rabcd U

aV bV cUd .

[ You may use: ∇b∇cX
a −∇c∇bX

a = Ra
dbcX

d for any vector field Xa. ]
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35D General Relativity
The Kasner (vacuum) cosmological model is defined by the line element

ds2 = −c2dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2 with t > 0 ,

where p1, p2, p3 are constants with p1 + p2 + p3 = p21 + p22 + p23 = 1 and 0 < p1 < 1. Show
that p2 p3 < 0.

Write down four equations that determine the null geodesics of the Kasner model.

If ka is the tangent vector to the trajectory of a photon and ua is the four-velocity of
a comoving observer (i.e., an observer at rest in the (t, x, y, z) coordinate system above),
what is the physical interpretation of kau

a ?

Let O be a comoving observer at the origin, x = y = z = 0, and let S be a comoving
source of photons located on one of the spatial coordinate axes.

(i) Show that photons emitted by S and observed by O can be either red-
shifted or blue-shifted, depending on the location of S.

(ii) Given any fixed time t = T , show that there are locations for S on each
coordinate axis from which no photons reach O for t 6 T .

Now suppose that p1 = 1 and p2 = p3 = 0. Does the property in (ii) still hold?

Paper 3, Section II

35D General Relativity
For a spacetime that is nearly flat, the metric gab can be expressed in the form

gab = ηab + hab ,

where ηab is a flat metric (not necessarily diagonal) with constant components, and the
components of hab and their derivatives are small. Show that

2Rbd ≈ hd
a
,ba + hb

a
,da − haa,bd − hbd,acη

ac ,

where indices are raised and lowered using ηab.

[ You may assume that Ra
bcd = Γa

bd,c − Γa
bc,d + Γa

ceΓ
e
db − Γa

deΓ
e
cb . ]

For the line element

ds2 = 2du dv + dx2 + dy2 +H(u, x, y) du2 ,

where H and its derivatives are small, show that the linearised vacuum field equations
reduce to ∇2H = 0, where ∇2 is the two-dimensional Laplacian operator in x and y.
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15G Graph Theory

Define the chromatic polynomial pG(t) of a graph G. Show that if G has n vertices

and m edges then

pG(t) = ant
n − an−1t

n−1 + an−2t
n−2 − . . .+ (−1)na0

where an = 1, an−1 = m and ai > 0 for all i. [You may assume the deletion-contraction

relation, provided that you state it clearly.]

Show that for every graph G (with n > 0) we have a0 = 0. Show also that a1 = 0

if and only if G is disconnected.

Explain why t4 − 2t3 + 3t2 − t is not the chromatic polynomial of any graph.

Paper 2, Section II

15G Graph Theory

Define the Turán graph Tr(n), where r and n are positive integers with n > r. For

which r and n is Tr(n) regular? For which r and n does Tr(n) contain T4(8) as a subgraph?

State and prove Turán’s theorem.

Let x1, . . . , xn be unit vectors in the plane. Prove that the number of pairs i < j

for which xi + xj has length less than 1 is at most ⌊n2/4⌋.

Paper 4, Section II

16G Graph Theory

State Menger’s theorem in both the vertex form and the edge form. Explain briefly

how the edge form of Menger’s theorem may be deduced from the vertex form.

(a) Show that if G is 3-connected then G contains a cycle of even length.

(b) Let G be a connected graph with all degrees even. Prove that λ(G) is even.

[Hint: if S is a minimal set of edges whose removal disconnects G, let H be a component

of G−S and consider the degrees of the vertices of H in the graph G−S.] Give an example

to show that κ(G) can be odd.
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16G Graph Theory

(a) Show that if G is a planar graph then χ(G) 6 5. [You may assume Euler’s

formula, provided that you state it precisely.]

(b) (i) Prove that if G is a triangle-free planar graph then χ(G) 6 4.

(ii) Prove that if G is a planar graph of girth at least 6 then χ(G) 6 3.

(iii) Does there exist a constant g such that, if G is a planar graph of girth at least

g, then χ(G) 6 2? Justify your answer.
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30D Integrable Systems
What is meant by an auto-Bäcklund transformation?

The sine-Gordon equation in light-cone coordinates is

∂2ϕ

∂ξ∂τ
= sinϕ, (1)

where ξ = 1
2(x − t), τ = 1

2(x + t) and ϕ is to be understood modulo 2π. Show that the
pair of equations

∂ξ(ϕ1 − ϕ0) = 2ǫ sin

(
ϕ1 + ϕ0

2

)
, ∂τ (ϕ1 + ϕ0) =

2

ǫ
sin

(
ϕ1 − ϕ0

2

)
(2)

constitute an auto-Bäcklund transformation for (1).

By noting that ϕ = 0 is a solution to (1), use the transformation (2) to derive the
soliton (or ‘kink’) solution to the sine-Gordon equation. Show that this solution can be
expressed as

ϕ(x, t) = 4 arctan

[
exp

(
± x− ct√

1− c2
+ x0

)]
,

for appropriate constants c and x0.

[Hint: You may use the fact that
∫
cosec xdx = log tan(x/2) + const.]

The following function is a solution to the sine-Gordon equation:

ϕ(x, t) = 4 arctan

[
c
sinh(x/

√
1− c2)

cosh(ct/
√
1− c2)

]
(c > 0).

Verify that this represents two solitons travelling towards each other at the same speed by
considering x± ct = constant and taking an appropriate limit.
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30D Integrable Systems
What does it mean for an evolution equation ut = K(x, u, ux, . . .) to be in

Hamiltonian form? Define the associated Poisson bracket.

An evolution equation ut = K(x, u, ux, . . .) is said to be bi-Hamiltonian if it can be
written in Hamiltonian form in two distinct ways, i.e.

K = J δH0 = E δH1

for Hamiltonian operators J , E and functionals H0,H1. By considering the sequence
{Hm}m>0 defined by the recurrence relation

E δHm+1 = J δHm , (∗)

show that bi-Hamiltonian systems possess infinitely many first integrals in involution.
[You may assume that (∗) can always be solved for Hm+1, given Hm.]

The Harry Dym equation for the function u = u(x, t) is

ut =
∂3

∂x3

(
u−1/2

)
.

This equation can be written in Hamiltonian form ut = EδH1 with

E = 2u
∂

∂x
+ ux , H1[u] =

1

8

∫
u−5/2u2x dx .

Show that the Harry Dym equation possesses infinitely many first integrals in involution.
[You need not verify the Jacobi identity if your argument involves a Hamiltonian operator.]
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31D Integrable Systems
What does it mean for gǫ : (x, u) 7→ (x̃, ũ) to describe a 1-parameter group of

transformations? Explain how to compute the vector field

V = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
(∗)

that generates such a 1-parameter group of transformations.

Suppose now u = u(x). Define the nth prolongation, pr(n)gǫ, of gǫ and the vector
field which generates it. If V is defined by (∗) show that

pr(n)V = V +

n∑

k=1

ηk
∂

∂u(k)
,

where u(k) = dku/dxk and ηk are functions to be determined.

The curvature of the curve u = u(x) in the (x, u)-plane is given by

κ =
uxx

(1 + u2x)
3/2

.

Rotations in the (x, u)-plane are generated by the vector field

W = x
∂

∂u
− u

∂

∂x
.

Show that the curvature κ at a point along a plane curve is invariant under such rotations.
Find two further transformations that leave κ invariant.
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19I Linear Analysis
(a) Define Banach spaces and Euclidean spaces over R. [You may assume the

definitions of vector spaces and inner products.]

(b) Let X be the space of sequences of real numbers with finitely many non-zero
entries. Does there exist a norm ‖ · ‖ on X such that (X, ‖ · ‖) is a Banach space? Does
there exist a norm such that (X, ‖ · ‖) is Euclidean? Justify your answers.

(c) Let (X, ‖ · ‖) be a normed vector space over R satisfying the parallelogram law

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

for all x, y ∈ X. Show that 〈x, y〉 = 1
4(‖x+ y‖2−‖x− y‖2) is an inner product on X. [You

may use without proof the fact that the vector space operations + and · are continuous
with respect to ‖ · ‖. To verify the identity 〈a+ b, c〉 = 〈a, c〉+ 〈b, c〉, you may find it helpful
to consider the parallelogram law for the pairs (a+ c, b), (b+ c, a), (a− c, b) and (b− c, a).]

(d) Let (X, ‖ · ‖X) be an incomplete normed vector space over R which is not a
Euclidean space, and let (X∗, ‖·‖X∗) be its dual space with the dual norm. Is (X∗, ‖·‖X∗ )
a Banach space? Is it a Euclidean space? Justify your answers.

Paper 2, Section II

20I Linear Analysis
(a) Let K be a topological space and let CR(K) denote the normed vector space of

bounded continuous real-valued functions on K with the norm ‖f‖CR(K) = supx∈K |f(x)|.
Define the terms uniformly bounded, equicontinuous and relatively compact as applied to
subsets S ⊂ CR(K).

(b) The Arzela–Ascoli theorem [which you need not prove] states in particular
that if K is compact and S ⊂ CR(K) is uniformly bounded and equicontinuous, then
S is relatively compact. Show by examples that each of the compactness of K, uniform
boundedness of S, and equicontinuity of S are necessary conditions for this conclusion.

(c) Let L be a topological space. Assume that there exists a sequence of compact
subsets Kn of L such that K1 ⊂ K2 ⊂ K3 ⊂ · · · ⊂ L and

⋃∞
n=1Kn = L. Suppose

S ⊂ CR(L) is uniformly bounded and equicontinuous and moreover satisfies the condition
that, for every ǫ > 0, there exists n ∈ N such that |f(x)| < ǫ for every x ∈ L \Kn and for
every f ∈ S. Show that S is relatively compact.
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21I Linear Analysis
(a) State the closed graph theorem.

(b) Prove the closed graph theorem assuming the inverse mapping theorem.

(c) Let X, Y , Z be Banach spaces and T : X → Y , S : Y → Z be linear maps.
Suppose that S ◦ T is bounded and S is both bounded and injective. Show that T is
bounded.

Paper 4, Section II

21I Linear Analysis
Let H be a complex Hilbert space.

(a) Let T : H → H be a bounded linear map. Show that the spectrum of T is a
subset of {λ ∈ C : |λ| 6 ‖T‖B(H)}.

(b) Let T : H → H be a bounded self-adjoint linear map. For λ, µ ∈ C, let
Eλ := {x ∈ H : Tx = λx} and Eµ := {x ∈ H : Tx = µx}. If λ 6= µ, show that Eλ ⊥ Eµ.

(c) Let T : H → H be a compact self-adjoint linear map. For λ 6= 0, show that
Eλ := {x ∈ H : Tx = λx} is finite-dimensional.

(d) Let H1 ⊂ H be a closed, proper, non-trivial subspace. Let P be the orthogonal
projection to H1.

(i) Prove that P is self-adjoint.

(ii) Determine the spectrum σ(P ) and the point spectrum σp(P ) of P .

(iii) Find a necessary and sufficient condition on H1 for P to be compact.
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14F Logic and Set Theory
Define the von Neumann hierarchy of sets Vα, and show that each Vα is a transitive

set. Explain what is meant by saying that a binary relation on a set is well-founded and
extensional . State Mostowski’s Theorem.

Let r be the binary relation on ω defined by: 〈m,n〉 ∈ r if and only if 2m appears in
the base-2 expansion of n (i.e., the unique expression for n as a sum of distinct powers of 2).
Show that r is well-founded and extensional. To which transitive set is (ω, r) isomorphic?
Justify your answer.

Paper 3, Section II

14F Logic and Set Theory
State the Completeness Theorem for the first-order predicate calculus, and deduce

the Compactness Theorem.

Let T be a first-order theory over a signature Σ whose axioms all have the form
(∀~x)φ where ~x is a (possibly empty) string of variables and φ is quantifier-free. Show that
every substructure of a T-model is a T-model, and deduce that if T is consistent then it
has a model in which every element is the interpretation of a closed term of L(Σ). [You
may assume the result that if B is a substructure of A and φ is a quantifier-free formula
with n free variables, then [[φ]]B = [[φ]]A ∩Bn.]

Now suppose T ⊢ (∃x)ψ where ψ is a quantifier-free formula with one free variable
x. Show that there is a finite list (t1, t2, . . . , tn) of closed terms of L(Σ) such that

T ⊢ (ψ[t1/x] ∨ ψ[t2/x] ∨ · · · ∨ ψ[tn/x]).

Paper 1, Section II

15F Logic and Set Theory
Which of the following statements are true? Justify your answers.

(a) Every ordinal is of the form α+ n, where α is a limit ordinal and n ∈ ω.
(b) Every ordinal is of the form ωα.m+ n, where α is an ordinal and m,n ∈ ω.

(c) If α = ω.α, then α = ωω.β for some β.

(d) If α = ωα, then α is uncountable.

(e) If α > 1 and α = αω, then α is uncountable.

[Standard laws of ordinal arithmetic may be assumed, but if you use the Division
Algorithm you should prove it.]
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15F Logic and Set Theory
(a) State Zorn’s Lemma, and use it to prove that every nontrivial distributive lattice

L admits a lattice homomorphism L→ {0, 1}.
(b) Let S be a propositional theory in a given language L. Sketch the way in which

the equivalence classes of formulae of L, modulo S-provable equivalence, may be made into
a Boolean algebra. [Detailed proofs are not required, but you should define the equivalence
relation explicitly.]

(c) Hence show how the Completeness Theorem for propositional logic may be
deduced from the result of part (a).
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6B Mathematical Biology
A stochastic birth–death process is given by the master equation

dpn
dt

= λ(pn−1 − pn) + µ [ (n− 1)pn−1 − npn ] + β [ (n+ 1)pn+1 − npn ] ,

where pn(t) is the probability that there are n individuals in the population at time t for
n = 0, 1, 2, . . . and pn = 0 for n < 0. Give a brief interpretation of λ, µ and β.

Derive an equation for
∂φ

∂t
, where φ is the generating function

φ(s, t) =

∞∑

n=0

snpn(t) .

Now assume that β > µ. Show that at steady state

φ =

(
β − µ

β − µs

)λ/µ

and find the corresponding mean and variance.

Paper 3, Section I

6B Mathematical Biology
A delay model for a population of size Nt at discrete time t is given by

Nt+1 = max
{
(r −N2

t−1)Nt , 0
}
.

Show that for r > 1 there is a non-trivial equilibrium, and analyse its stability. Show that,
as r is increased from 1, the equilibrium loses stability at r = 3/2 and find the approximate
periodicity close to equilibrium at this point.
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6B Mathematical Biology
(a) The populations of two competing species satisfy

dN1

dt
= N1[ b1 − λ(N1 +N2) ] ,

dN2

dt
= N2[ b2 − λ(N1 +N2) ] ,

where b1 > b2 > 0 and λ > 0. Sketch the phase diagram (limiting attention to N1, N2 > 0).

The relative abundance of species 1 is defined by U = N1/(N1 +N2). Show that

dU

dt
= AU(1− U) ,

where A is a constant that should be determined.

(b) Consider the spatial system

∂u

∂t
= u(1− u) + D

∂2u

∂x2
,

and consider a travelling-wave solution of the form u(x, t) = f(x − ct) representing one
species (u = 1) invading territory previously occupied by another species (u = 0). By
linearising near the front of the invasion, show that the wave speed is given by c = 2

√
D.

[You may assume that the solution to the full nonlinear system will settle to the
slowest possible linear wave speed.]
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6B Mathematical Biology
Consider an epidemic model where susceptibles are vaccinated at per capita rate v,

but immunity (from infection or vaccination) is lost at per capita rate b. The system is
given by

dS

dt
= −rIS + b(N − I − S) − vS ,

dI

dt
= rIS − aI ,

where S(t) are the susceptibles, I(t) are the infecteds, N is the total population size and
all parameters are positive. The basic reproduction ratio R0 = rN/a satisfies R0 > 1.

Find the critical vaccination rate vc, in terms of b and R0, such that the system has
an equilibrium with the disease present if v < vc. Show that this equilibrium is stable
when it exists.

Find the long-term outcome for S and I if v > vc.

Paper 3, Section II

12B Mathematical Biology
The Fitzhugh–Nagumo model is given by

u̇ = c
(
v + u− 1

3u
3 + z(t)

)

v̇ = −1

c
(u− a+ b v) ,

where (1− 2
3b) < a < 1, 0 < b 6 1 and c≫ 1.

For z(t) = 0, by considering the nullclines in the (u, v)-plane, show that there is a
unique equilibrium. Sketch the phase diagram.

At t = 0 the system is at the equilibrium, and z(t) is then ‘switched on’ to be
z(t) = −V0 for t > 0, where V0 is a constant. Describe carefully how suitable choices of
V0 > 0 can represent a system analogous to (i) a neuron firing once, and (ii) a neuron
firing repeatedly. Illustrate your answer with phase diagrams and also plots of v against
t for each case. Find the threshold for V0 that separates these cases. Comment briefly
from a biological perspective on the behaviour of the system when a = 1 − 2

3b + ǫb and
0 < ǫ≪ 1.
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13B Mathematical Biology
The population densities of two types of cell are given by U(x, t) and V (x, t). The

system is described by the equations

∂U

∂t
= αU(1− U) + χ

∂

∂x

(
U
∂V

∂x

)
+D

∂2U

∂x2
,

∂V

∂t
= V (1− V )− β UV +

∂2V

∂x2
,

where α, β, χ and D are positive constants.

(a) Identify the terms which involve interaction between the cell types, and briefly
describe what each of these terms might represent.

(b) Consider the system without spatial dynamics. Find the condition on β for
there to be a non-trivial spatially homogeneous solution that is stable to spatially invariant
disturbances.

(c) Consider now the full spatial system, and consider small spatial perturbations
proportional to cos(kx) of the solution found in part (b). Show that for sufficiently large
χ (the precise threshold should be found) the spatially homogeneous solution is stable to
perturbations with either small or large wavenumber, but is unstable to perturbations at
some intermediate wavenumber.
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Paper 2, Section II

18F Number Fields
(a) Prove that 5 + 2

√
6 is a fundamental unit in Q(

√
6). [You may not assume the

continued fraction algorithm.]

(b) Determine the ideal class group of Q(
√
−55).

Paper 1, Section II

19F Number Fields
(a) Let f(X) ∈ Q[X] be an irreducible polynomial of degree n, θ ∈ C a root of f ,

and K = Q(θ). Show that disc(f) = ±NK/Q(f
′(θ)).

(b) Now suppose f(X) = Xn + aX + b. Write down the matrix representing
multiplication by f ′(θ) with respect to the basis 1, θ, . . . , θn−1 for K. Hence show that

disc(f) = ±
(
(1− n)n−1an + nnbn−1

)
.

(c) Suppose f(X) = X4 + X + 1. Determine OK . [You may quote any standard
result, as long as you state it clearly.]

Paper 4, Section II

19F Number Fields
Let K be a number field, and p a prime in Z. Explain what it means for p to be

inert, to split completely, and to be ramified in K.

(a) Show that if [K : Q] > 2 and OK = Z[α] for some α ∈ K, then 2 does not split
completely in K.

(b) Let K = Q(
√
d), with d 6= 0, 1 and d square-free. Determine, in terms of d,

whether p = 2 splits completely, is inert, or ramifies in K. Hence show that the primes
which ramify in K are exactly those which divide DK .
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1I Number Theory
Show that the exact power of a prime p dividing N ! is

∑∞
j=1⌊Npj ⌋. By considering

the prime factorisation of
(2n
n

)
, show that

4n

2n+ 1
6

(
2n

n

)
6 (2n)π(2n).

Setting n = ⌊x2 ⌋, deduce that for x sufficiently large

π(x) >
⌊x2 ⌋ log 3
log x

>
x

2 log x
.

Paper 4, Section I

1I Number Theory
Compute the continued fraction expansion of

√
14, and use it to find two solutions

to x2 − 14y2 = 2 where x and y are positive integers.

Paper 2, Section I

1I Number Theory
Define the Legendre symbol and the Jacobi symbol. Compute the Jacobi symbols(

202
11189

)
and

(
974
1001

)
, stating clearly any properties of these symbols that you use.

Paper 1, Section I

1I Number Theory
Define the Riemann zeta function ζ(s) for Re(s) > 1. State and prove the alternative

formula for ζ(s) as an Euler product. Hence or otherwise show that ζ(s) 6= 0 for Re(s) > 1.
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10I Number Theory
(a) Define Euler’s totient function φ(n) and show that

∑
d|n φ(d) = n.

(b) State Lagrange’s theorem concerning roots of polynomials mod p.

(c) Let p be a prime. Proving any results you need about primitive roots, show that
xm ≡ 1 (mod p) has exactly (m, p − 1) roots.

(d) Show that if p and 3p − 2 are both primes then N = p(3p − 2) is a Fermat
pseudoprime for precisely a third of all bases.

Paper 3, Section II

10I Number Theory
What does it mean for a positive definite binary quadratic form to be reduced?

Prove that every positive definite binary quadratic form is equivalent to a reduced
form, and that there are only finitely many reduced forms with given discriminant.

State a criterion for a positive integer n to be represented by a positive definite
binary quadratic form with discriminant d < 0, and hence determine which primes p are
represented by x2 + xy + 7y2.
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38B Numerical Analysis
(a) Describe an implementation of the power method for determining the eigenvalue

of largest modulus and its associated eigenvector for a matrix that has a unique eigenvalue
of largest modulus.

Now let A be a real n × n matrix with distinct eigenvalues satisfying |λn| = |λn−1|
and |λn| > |λi|, i = 1, . . . , n − 2. The power method is applied to A, with an initial
condition x(0) =

∑n
i=1 ciwi such that cn−1cn 6= 0, where wi is the eigenvector associated

with λi. Show that the power method does not converge. Explain why x(k), x(k+1) and
x(k+2) become linearly dependent as k → ∞.

(b) Consider the following variant of the power method, called the two-stage power
method, applied to the matrix A of part (a):

0. Pick x(0) ∈ Rn satisfying ‖x(0)‖ = 1. Let 0 < ε ≪ 1. Set k = 0 and
x(1) = Ax(0).

1. Calculate x(k+2) = Ax(k+1) and calculate α, β that minimise

f(α, β) = ‖x(k+2)+αx(k+1)+βx(k)‖.

2. If f(α, β) 6 ε, solve λ2+αλ+β = 0 and let the roots be λ1 and λ2. They are
accepted as eigenvalues of A, and the corresponding eigenvectors are estimated
as x(k+1)−λ2x(k) and x(k+1)−λ1x(k).

3. Otherwise, divide x(k+2) and x(k+1) by the current value of ‖x(k+1)‖, increase
k by 1 and return to Step 1.

Explain the justification behind Step 2 of the algorithm.

(c) Let n = 3, and suppose that, for a large value of k, the two-stage power method
yields the vectors

yk = x(k) =




1
1
1


 , yk+1 = Ax(k) =




2
3
4


 , yk+2 = A2x(k) =




2
4
6


 .

Find two eigenvalues of A and the corresponding eigenvectors.
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38B Numerical Analysis
(a) The advection equation

ut = ux, 0 6 x 6 1, t > 0

is discretised using an equidistant grid with stepsizes ∆x = h and ∆t = k. The
spatial derivatives are approximated with central differences and the resulting ODEs are
approximated with the trapezoidal rule. Write down the relevant difference equation for
determining (un+1

m ) from (unm). What is the name of this scheme? What is the local
truncation error?

The boundary condition is periodic, u(0, t) = u(1, t). Explain briefly how to write
the discretised scheme in the form Bun+1 = Cun, where the matrices B and C, to be
identified, have a circulant form. Using matrix analysis, find the range of µ = ∆t/∆x
for which the scheme is stable. [Standard results may be used without proof if quoted
carefully.]

[Hint: An n× n circulant matrix has the form

A =




a0 a1 . . . an−1

an−1
. . .

. . .
...

...
. . .

. . . a1
a1 . . . an−1 a0




.

All such matrices have the same set of eigenvectors vℓ =
(
ωjℓ
)n−1

j=0
, ℓ = 0, 1, . . . , n−1,

where ω = e2πi/n, and the corresponding eigenvalues are λℓ =
∑n−1

k=0 akω
kℓ. ]

(b) Consider the advection equation on the unit square

ut = aux + buy, 0 6 x, y 6 1, t > 0 ,

where u satisfies doubly periodic boundary conditions, u(0, y) = u(1, y), u(x, 0) = u(x, 1),
and a(x, y) and b(x, y) are given doubly periodic functions. The system is discretised
with the Crank–Nicolson scheme, with central differences for the space derivatives, using
an equidistant grid with stepsizes ∆x = ∆y = h and ∆t = k. Write down the relevant
difference equation, and show how to write the scheme in the form

un+1 = (I − 1
4µA)

−1(I + 1
4µA)u

n , (∗)

where the matrix A should be identified. Describe how (∗) can be approximated by Strang
splitting, and explain the advantages of doing so.

[Hint: Inversion of the matrix B in part (a) has a similar computational cost to that of a
tridiagonal matrix. ]
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Paper 1, Section II

38B Numerical Analysis
(a) Consider the periodic function

f(x) = 5 + 2 cos
(
2πx− π

2

)
+ 3cos(4πx)

on the interval [0, 1]. The N -point discrete Fourier transform of f is defined by

FN (n) =
1

N

N−1∑

k=0

fk ω
−nk
N , n = 0, 1, . . . , N − 1, (∗)

where ωN = e2πi/N and fk = f(k/N). Compute F4(n), n = 0, . . . , 3, using the Fast Fourier
Transform (FFT). Compare your result with what you get by computing F4(n) directly
from (∗). Carefully explain all your computations.

(b) Now let f be any analytic function on R that is periodic with period 1. The
continuous Fourier transform of f is defined by

f̂n =

∫ 1

0
f(τ) e−2πinτ dτ , n ∈ Z .

Use integration by parts to show that the Fourier coefficients f̂n decay spectrally.

Explain what it means for the discrete Fourier transform of f to approximate the
continuous Fourier transform with spectral accuracy. Prove that it does so.

What can you say about the behaviour of FN (N − n) as N → ∞ for fixed n?
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38B Numerical Analysis
(a) Define the Jacobi and Gauss–Seidel iteration schemes for solving a linear

system of the form Au = b, where u,b ∈ RM and A ∈ RM×M , giving formulae for
the corresponding iteration matrices HJ and HGS in terms of the usual decomposition
A = L0 +D + U0.

Show that both iteration schemes converge when A results from discretization of
Poisson’s equation on a square with the five-point formula, that is when

A =




S I

I S I

. . .
. . .

. . .

I S I

I S


 , S =




−4 1

1 −4 1

. . .
. . .

. . .

1 −4 1

1 −4


 ∈ Rm×m (∗)

and M = m2. [You may state the Householder–John theorem without proof.]

(b) For the matrix A given in (∗):

(i) Calculate the eigenvalues of HJ and deduce its spectral radius ρ(HJ).

(ii) Show that each eigenvector q of HGS is related to an eigenvector p of HJ

by a transformation of the form qi,j = αi+jpi,j for a suitable value of α.

(iii) Deduce that ρ(HGS) = ρ2(HJ). What is the significance of this result for
the two iteration schemes?

[
Hint: You may assume that the eigenvalues of the matrix A in (∗) are

λk,ℓ = −4
(
sin2

x

2
+ sin2

y

2

)
, where x =

kπh

m+ 1
, y =

ℓπh

m+ 1
, k, ℓ = 1, . . . ,m,

with corresponding eigenvectors v = (vi,j) , vi,j = sin ix sin jy , i, j = 1, . . . ,m .
]
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27K Optimization and Control
Consider the system in scalar variables, for t = 1, 2, . . . , h:

xt = xt−1 + ut−1,

yt = xt−1 + ηt,

x̂0 = x0 + η0,

where x̂0 is given, yt, ut are observed at t, but x0, x1, . . . and η0, η1, . . . are unobservable,
and η0, η1, . . . are independent random variables with mean 0 and variance v. Define x̂t−1 to
be the estimator of xt−1 with minimum variance amongst all estimators that are unbiased
and linear functions of Wt−1 = (x̂0, y1, . . . , yt−1, u0, . . . , ut−2). Suppose x̂t−1 = aTWt−1

and its variance is Vt−1. After observation at t of (yt, ut−1), a new unbiased estimator of
xt−1, linear in Wt, is expressed

x∗t−1 = (1−H)bTWt−1 +Hyt.

Find b and H to minimize the variance of x∗t−1. Hence find x̂t in terms of x̂t−1, yt, ut−1,
Vt−1 and v. Calculate Vh.

Suppose η0, η1, . . . are Gaussian and thus x̂t = E[xt |Wt]. Consider minimizing
E[x2h +

∑h−1
t=0 u

2
t ], under the constraint that the control ut can only depend on Wt. Show

that the value function of dynamic programming for this problem can be expressed

F (Wt) = Πtx̂
2
t + · · ·

where F (Wh) = x̂2h + Vh and + · · · is independent of Wt and linear in v.
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28K Optimization and Control
State transversality conditions that can be used with Pontryagin’s maximum

principle and say when they are helpful.

Given T , it is desired to maximize c1x1(T ) + c2x2(T ), where

ẋ1 = u1(a1x1 + a2x2),

ẋ2 = u2(a1x1 + a2x2),

and u = (u1, u2) is a time-varying control such that u1 > 0, u2 > 0 and u1 + u2 = 1.
Suppose that x1(0) and x2(0) are positive, and that 0 < a2 < a1 and 0 < c1 < c2. Find
the optimal control at times close to T . Show that over [0, T ] the optimal control is
constant, or makes exactly one switch, the latter happening if and only if

c2e
a2T < c1 +

a1c2
a2

(
ea2T − 1

)
.

Paper 2, Section II

28K Optimization and Control
Consider a Markov decision problem with finite state space X, value function F and

dynamic programming equation F = LF , where

(Lφ)(i) = min
a∈{0,1}

{
c(i, a) + β

∑
j∈X Pij(a)φ(j)

}
.

Suppose 0 < β < 1, and |c(i, a)| 6 B for all i ∈ X, a ∈ {0, 1}. Prove there exists
a deterministic stationary Markov policy that is optimal, explaining what the italicised
words mean.

Let Fn = LnF0, where F0 = 0, and Mn = max i∈X |F (i) − Fn(i)|. Prove that

Mn 6 βMn−1 6 βnB/(1− β).

Deduce that the value iteration algorithm converges to an optimal policy in a finite
number of iterations.
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31A Principles of Quantum Mechanics
A particle in one dimension has position and momentum operators x̂ and p̂ whose

eigenstates obey

〈x|x′〉 = δ(x−x′) , 〈p|p′〉 = δ(p−p′) , 〈x|p〉 = (2π~)−1/2eixp/~ .

For a state |ψ〉, define the position-space and momentum-space wavefunctions ψ(x) and
ψ̃(p) and show how each of these can be expressed in terms of the other.

Write down the translation operator U(α) and check that your expression is
consistent with the property U(α)|x〉 = |x+ α〉. For a state |ψ〉, relate the position-space
and momentum-space wavefunctions for U(α)|ψ〉 to ψ(x) and ψ̃(p) respectively.

Now consider a harmonic oscillator with mass m, frequency ω, and annihilation and
creation operators

a =
(mω
2~

)1/2(
x̂+

i

mω
p̂
)
, a† =

(mω
2~

)1/2(
x̂− i

mω
p̂
)
.

Let ψn(x) and ψ̃n(p) be the wavefunctions corresponding to the normalised energy
eigenstates |n〉, where n = 0, 1, 2, . . . .

(i) Express ψ0(x− α) explicitly in terms of the wavefunctions ψn(x).

(ii) Given that ψ̃n(p) = fn(u) ψ̃0(p), where the fn are polynomials and u = (2/~mω)1/2p,
show that

e−iγu = e−γ2/2
∞∑

n=0

γn√
n!
fn(u) for any real γ .

[ You may quote standard results for a harmonic oscillator. You may also use, without

proof, eA+B = eAeBe−
1
2 [A,B] for operators A and B which each commute with [A,B] . ]
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31A Principles of Quantum Mechanics
A three-dimensional oscillator has Hamiltonian

H =
1

2m
( p̂21 + p̂22 + p̂23 ) +

1

2
mω2(α2x̂21 + β2x̂22 + γ2x̂23 ) ,

where the constants m, ω, α, β, γ are real and positive. Assuming a unique ground
state, construct the general normalised eigenstate of H and give a formula for its energy
eigenvalue. [You may quote without proof results for a one-dimensional harmonic oscillator
of mass m and frequency ω that follow from writing x̂ = (~/2mω)1/2(a + a†) and
p̂ = (~mω/2)1/2 i (a† − a) . ]

List all states in the four lowest energy levels of H in the cases:

(i) α < β < γ < 2α ;

(ii) α = β and γ = α+ ǫ , where 0 < ǫ≪ α .

Now consider H with α = β = γ = 1 subject to a perturbation

λmω2( x̂1x̂2 + x̂2x̂3 + x̂3x̂1 ) ,

where λ is small. Compute the changes in energies for the ground state and the states at the
first excited level of the original Hamiltonian, working to the leading order at which non-
zero corrections occur. [You may quote without proof results from perturbation theory.]

Explain briefly why some energy levels of the perturbed Hamiltonian will be exactly
degenerate. [Hint: Compare with (ii) above.]
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31A Principles of Quantum Mechanics
(a) Consider a quantum system with Hamiltonian H = H0 + V , where H0 is

independent of time. Define the interaction picture corresponding to this Hamiltonian
and derive an expression for the time derivative of an operator in the interaction picture,
assuming it is independent of time in the Schrödinger picture.

(b) The Pauli matrices σ = (σ1, σ2, σ3) satisfy

σi σj = δij + i ǫijk σk .

Explain briefly how these properties allow σ to be used to describe a quantum system
with spin 1

2 .

(c) A particle with spin 1
2 has position and momentum operators x̂ = (x̂1, x̂2, x̂3)

and p̂ = (p̂1, p̂2, p̂3). The unitary operator corresponding to a rotation through an angle θ
about an axis n is U = exp(−i θ n · J/~) where J is the total angular momentum. Check
this statement by considering the effect of an infinitesimal rotation on x̂, p̂ and σ.

(d) Suppose that the particle in part (c) has Hamiltonian H = H0 + V with

H0 =
1

2m
p̂2 + αL · σ and V = B σ3 ,

where L is the orbital angular momentum and α, B are constants. Show that all
components of J are independent of time in the interaction picture. Is this true in the
Heisenberg picture?

[ You may quote commutation relations of L with x̂ and p̂. ]
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32A Principles of Quantum Mechanics
(a) Let | j m 〉 be standard, normalised angular momentum eigenstates with labels

specifying eigenvalues for J2 and J3. Taking units in which ~ = 1,

J±| j m 〉 =
{
(j∓m)(j±m+1)

}1/2 | j m±1 〉 .

Check the coefficients above by computing norms of states, quoting any angular momentum
commutation relations that you require.

(b) Two particles, each of spin s > 0, have combined spin states |J M 〉. Find
expressions for all such states with M = 2s−1 in terms of product states.

(c) Suppose that the particles in part (b) move about their centre of mass with a
spatial wavefunction that is a spherically symmetric function of relative position. If the
particles are identical, what spin states |J 2s−1 〉 are allowed? Justify your answer.

(d) Now consider two particles of spin 1 that are not identical and are both at rest.
If the 3-component of the spin of each particle is zero, what is the probability that their
total, combined spin is zero?
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Paper 3, Section II

25J Principles of Statistics
Let X1, . . . ,Xn be i.i.d. random variables from a N(θ, 1) distribution, θ ∈ R, and

consider a Bayesian model θ ∼ N(0, v2) for the unknown parameter, where v > 0 is a
fixed constant.

(a) Derive the posterior distribution Π(· | X1, . . . ,Xn) of θ | X1, . . . ,Xn.

(b) Construct a credible set Cn ⊂ R such that

(i) Π(Cn|X1, . . . ,Xn) = 0.95 for every n ∈ N, and

(ii) for any θ0 ∈ R,
PN
θ0(θ0 ∈ Cn) → 0.95 as n→ ∞,

where PN
θ denotes the distribution of the infinite sequence X1,X2, . . . when

drawn independently from a fixed N(θ, 1) distribution.

[You may use the central limit theorem.]

Paper 2, Section II

26J Principles of Statistics
(a) State and prove the Cramér–Rao inequality in a parametric model {f(θ) : θ ∈ Θ},

where Θ ⊆ R. [Necessary regularity conditions on the model need not be specified.]

(b) Let X1, . . . ,Xn be i.i.d. Poisson random variables with unknown parameter
EX1 = θ > 0. For X̄n = (1/n)

∑n
i=1Xi and S

2 = (n − 1)−1
∑n

i=1(Xi − X̄n)
2 define

Tα = αX̄n + (1− α)S2, 0 6 α 6 1.

Show that Varθ(Tα) > Varθ(X̄n) for all values of α, θ.

Now suppose θ̃ = θ̃(X1, . . . ,Xn) is an estimator of θ with possibly nonzero bias
B(θ) = Eθθ̃ − θ. Suppose the function B is monotone increasing on (0,∞). Prove that
the mean-squared errors satisfy

Eθ(θ̃n − θ)2 > Eθ(X̄n − θ)2 for all θ ∈ Θ.
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26J Principles of Statistics
Consider a decision problem with parameter space Θ. Define the concepts of a

Bayes decision rule δπ and of a least favourable prior.

Suppose π is a prior distribution on Θ such that the Bayes risk of the Bayes
rule equals supθ∈ΘR(δπ, θ), where R(δ, θ) is the risk function associated to the decision
problem. Prove that δπ is least favourable.

Now consider a random variable X arising from the binomial distribution
Bin(n, θ), where θ ∈ Θ = [0, 1]. Construct a least favourable prior for the squared risk
R(δ, θ) = Eθ(δ(X) − θ)2. [You may use without proof the fact that the Bayes rule for
quadratic risk is given by the posterior mean.]

Paper 1, Section II

27J Principles of Statistics
Derive the maximum likelihood estimator θ̂n based on independent observations

X1, . . . ,Xn that are identically distributed as N(θ, 1), where the unknown parameter θ
lies in the parameter space Θ = R. Find the limiting distribution of

√
n(θ̂n−θ) as n→ ∞.

Now define
θ̃n = θ̂n whenever |θ̂n| > n−1/4,

= 0 otherwise,

and find the limiting distribution of
√
n(θ̃n − θ) as n→ ∞.

Calculate
lim
n→∞

sup
θ∈Θ

nEθ(Tn − θ)2

for the choices Tn = θ̂n and Tn = θ̃n. Based on the above findings, which estimator Tn of
θ would you prefer? Explain your answer.

[Throughout, you may use standard facts of stochastic convergence, such as the
central limit theorem, provided they are clearly stated.]
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23J Probability and Measure
(a) Define the Borel σ-algebra B and the Borel functions.

(b) Give an example with proof of a set in [0, 1] which is not Lebesgue measurable.

(c) The Cantor set C is given by

C =

{
∞∑

k=1

ak
3k

: (ak) is a sequence with ak ∈ {0, 2} for all k

}
.

(i) Explain why C is Lebesgue measurable.

(ii) Compute the Lebesgue measure of C.
(iii) Is every subset of C Lebesgue measurable?

(iv) Let f : [0, 1] → C be the function given by

f(x) =

∞∑

k=1

2ak
3k

where ak = ⌊2kx⌋ − 2⌊2k−1x⌋.

Explain why f is a Borel function.

(v) Using the previous parts, prove the existence of a Lebesgue measurable set
which is not Borel.

Paper 4, Section II

24J Probability and Measure
Give the definitions of the convolution f ∗g and of the Fourier transform f̂ of f , and

show that f̂ ∗ g = f̂ ĝ. State what it means for Fourier inversion to hold for a function f .

State the Plancherel identity and compute the L2 norm of the Fourier transform of
the function f(x) = e−x1[0,1].

Suppose that (fn), f are functions in L1 such that fn → f in L1 as n → ∞. Show
that f̂n → f̂ uniformly.

Give the definition of weak convergence, and state and prove the Central Limit
Theorem.
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24J Probability and Measure
(a) State Jensen’s inequality. Give the definition of ‖ · ‖Lp and the space Lp for

1 < p <∞. If ‖f − g‖Lp = 0, is it true that f = g? Justify your answer. State and prove
Hölder’s inequality using Jensen’s inequality.

(b) Suppose that (E, E , µ) is a finite measure space. Show that if 1 < q < p and
f ∈ Lp(E) then f ∈ Lq(E). Give the definition of ‖ · ‖L∞ and show that ‖f‖Lp → ‖f‖L∞

as p→ ∞.

(c) Suppose that 1 < q < p <∞. Show that if f belongs to both Lp(R) and Lq(R),
then f ∈ Lr(R) for any r ∈ [q, p]. If f ∈ Lp(R), must we have f ∈ Lq(R)? Give a proof or
a counterexample.

Paper 1, Section II

25J Probability and Measure
Throughout this question (E, E , µ) is a measure space and (fn), f are measurable

functions.

(a) Give the definitions of pointwise convergence, pointwise a.e. convergence, and
convergence in measure.

(b) If fn → f pointwise a.e., does fn → f in measure? Give a proof or a
counterexample.

(c) If fn → f in measure, does fn → f pointwise a.e.? Give a proof or a
counterexample.

(d) Now suppose that (E, E) = ([0, 1],B([0, 1])) and that µ is Lebesgue measure on
[0, 1]. Suppose (fn) is a sequence of Borel measurable functions on [0, 1] which converges
pointwise a.e. to f .

(i) For each n, k let En,k =
⋃

m>n{x : |fm(x) − f(x)| > 1/k}. Show that
limn→∞ µ(En,k) = 0 for each k ∈ N.

(ii) Show that for every ǫ > 0 there exists a set A with µ(A) < ǫ so that fn → f
uniformly on [0, 1] \ A.

(iii) Does (ii) hold with [0, 1] replaced by R? Give a proof or a counterexample.
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17I Representation Theory
(a) Let the finite group G act on a finite set X and let π be the permutation

character. If G is 2-transitive on X, show that π = 1G + χ, where χ is an irreducible
character of G.

(b) Let n > 4, and let G be the symmetric group Sn acting naturally on the set
X = {1, . . . , n}. For any integer r 6 n/2, write Xr for the set of all r-element subsets of
X, and let πr be the permutation character of the action of G on Xr. Compute the degree
of πr. If 0 6 ℓ 6 k 6 n/2, compute the character inner product 〈πk, πℓ〉.

Let m = n/2 if n is even, and m = (n−1)/2 if n is odd. Deduce that Sn has distinct
irreducible characters χ(n) = 1G, χ

(n−1,1), χ(n−2,2), . . . , χ(n−m,m) such that for all r 6 m,

πr = χ(n) + χ(n−1,1) + χ(n−2,2) + · · · + χ(n−r,r).

(c) Let Ω be the set of all ordered pairs (i, j) with i, j ∈ {1, 2, . . . , n} and i 6= j. Let
Sn act on Ω in the obvious way. Write π(n−2,1,1) for the permutation character of Sn in
this action. By considering inner products, or otherwise, prove that

π(n−2,1,1) = 1 + 2χ(n−1,1) + χ(n−2,2) + ψ,

where ψ is an irreducible character. Calculate the degree of ψ, and calculate its value on
the elements (1 2) and (1 2 3) of Sn.

Paper 2, Section II

17I Representation Theory
Show that the 1-dimensional (complex) characters of a finite group G form a group

under pointwise multiplication. Denote this group by Ĝ. Show that if g ∈ G, the map

χ 7→ χ(g) from Ĝ to C is a character of Ĝ, hence an element of
̂̂
G . What is the kernel of

the map G→ ̂̂
G ?

Show that if G is abelian the map G → ̂̂
G is an isomorphism. Deduce, from the

structure theorem for finite abelian groups, that the groups G and Ĝ are isomorphic as
abstract groups.
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18I Representation Theory
Let N be a proper normal subgroup of a finite group G and let U be an irreducible

complex representation of G. Show that either U restricted to N is a sum of copies
of a single irreducible representation of N , or else U is induced from an irreducible
representation of some proper subgroup of G.

Recall that a p-group is a group whose order is a power of the prime number p.
Deduce, by induction on the order of the group, or otherwise, that every irreducible
complex representation of a p-group is induced from a 1-dimensional representation of
some subgroup.

[You may assume that a non-abelian p-group G has an abelian normal subgroup
which is not contained in the centre of G.]

Paper 1, Section II

18I Representation Theory
Let N be a normal subgroup of the finite group G. Explain how a (complex)

representation of G/N gives rise to an associated representation of G, and briefly describe
which representations of G arise this way.

Let G be the group of order 54 which is given by

G = 〈a, b : a9 = b6 = 1, b−1ab = a2〉.

Find the conjugacy classes of G. By observing that N1 = 〈a〉 and N2 = 〈a3, b2〉 are normal
in G, or otherwise, construct the character table of G.
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20H Riemann Surfaces
Let f be a non-constant elliptic function with respect to a lattice Λ ⊂ C. Let

P ⊂ C be a fundamental parallelogram and let the degree of f be n. Let a1, . . . , an denote
the zeros of f in P , and let b1, . . . , bn denote the poles (both with possible repeats). By
considering the integral (if required, also slightly perturbing P )

1

2πi

∫

∂P
z
f ′(z)

f(z)
dz,

show that
n∑

j=1

aj −
n∑

j=1

bj ∈ Λ.

Let ℘(z) denote the Weierstrass ℘-function with respect to Λ. For v,w /∈ Λ with
℘(v) 6= ℘(w) we set

f(z) = det




1 1 1
℘(z) ℘(v) ℘(w)
℘′(z) ℘′(v) ℘′(w)


 ,

an elliptic function with periods Λ. Suppose z 6∈ Λ, z − v 6∈ Λ and z − w 6∈ Λ. Prove that
f(z) = 0 if and only if z+ v+w ∈ Λ. [You may use standard properties of the Weierstrass
℘-function provided they are clearly stated.]

Paper 2, Section II

21H Riemann Surfaces
Suppose that f : C/Λ1 → C/Λ2 is a holomorphic map of complex tori, and let πj

denote the projection map C → C/Λj for j = 1, 2. Show that there is a holomorphic map
F : C → C such that π2F = fπ1.

Prove that F (z) = λz + µ for some λ, µ ∈ C. Hence deduce that two complex
tori C/Λ1 and C/Λ2 are conformally equivalent if and only if the lattices are related by
Λ2 = λΛ1 for some λ ∈ C∗.
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22H Riemann Surfaces
(a) Let f : R → S be a non-constant holomorphic map between Riemann surfaces.

Prove that f takes open sets of R to open sets of S.

(b) Let U be a simply connected domain strictly contained in C. Is there a conformal
equivalence between U and C? Justify your answer.

(c) Let R be a compact Riemann surface and A ⊂ R a discrete subset. Given a
non-constant holomorphic function f : R \ A→ C, show that f(R \ A) is dense in C.
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Paper 2, Section I

5K Statistical Modelling
Define an exponential dispersion family. Prove that the range of the natural

parameter, Θ, is an open interval. Derive the mean and variance as a function of the
log normalizing constant.

[Hint: Use the convexity of ex, i.e. epx+(1−p)y 6 pex + (1− p)ey for all p ∈ [0, 1].]

Paper 4, Section I

5K Statistical Modelling
(a) Let Yi = x⊺i β + εi where εi for i = 1, . . . , n are independent and identically

distributed. Let Zi = I(Yi < 0) for i = 1, . . . , n, and suppose that these variables
follow a binary regression model with the complementary log-log link function g(µ) =
log(− log(1− µ)). What is the probability density function of ε1?

(b) The Newton–Raphson algorithm can be applied to compute the MLE, β̂, in
certain GLMs. Starting from β(0) = 0, we let β(t+1) be the maximizer of the quadratic
approximation of the log-likelihood ℓ(β;Y ) around β(t):

ℓ(β;Y ) ≈ ℓ(β(t);Y ) + (β − β(t))⊺Dℓ(β(t);Y ) + (β − β(t))⊺D2ℓ(β(t);Y )(β − β(t)),

whereDℓ andD2ℓ are the gradient and Hessian of the log-likelihood. What is the difference
between this algorithm and Iterative Weighted Least Squares? Why might the latter be
preferable?
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5K Statistical Modelling
The R command

> boxcox(rainfall ∼ month+elnino+month:elnino)

performs a Box–Cox transform of the response at several values of the parameter λ, and
produces the following plot:
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We fit two linear models and obtain the Q–Q plots for each fit, which are shown
below in no particular order:

> fit.1 <- lm(rainfall ∼ month+elnino+month:elnino)

> plot(fit.1,which=2)

> fit.2 <- lm(rainfall^-0.07 ∼ month+elnino+month:elnino)

> plot(fit.2,which=2)
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This question continues on the next page
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5K Statistical Modelling (continued)
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Define the variable on the y-axis in the output of boxcox, and match each Q–Q plot
to one of the models.

After choosing the model fit.2, the researcher calculates Cook’s distance for the
ith sample, which has high leverage, and compares it to the upper 0.01-point of an Fp,n−p

distribution, because the design matrix is of size n × p. Provide an interpretation of this
comparison in terms of confidence sets for β̂. Is this confidence statement exact?
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5K Statistical Modelling
The body mass index (BMI) of your closest friend is a good predictor of your own

BMI. A scientist applies polynomial regression to understand the relationship between
these two variables among 200 students in a sixth form college. The R commands

> fit.1 <- lm(BMI ∼ poly(friendBMI,2,raw=T))

> fit.2 <- lm(BMI ∼ poly(friendBMI,3,raw=T))

fit the models Y = β0+β1X+β2X
2+ε and Y = β0+β1X+β2X

2+β3X
3+ε, respectively,

with ε ∼ N(0, σ2) in each case.

Setting the parameters raw to FALSE:

> fit.3 <- lm(BMI ∼ poly(friendBMI,2,raw=F))

> fit.4 <- lm(BMI ∼ poly(friendBMI,3,raw=F))

fits the models Y = β0 + β1P1(X) + β2P2(X) + ε and Y = β0 + β1P1(X) + β2P2(X) +
β3P3(X)+ε, with ε ∼ N(0, σ2). The function Pi is a polynomial of degree i. Furthermore,
the design matrix output by the function poly with raw=F satisfies:

> t(poly(friendBMI,3,raw=F))%*%poly(a,3,raw=F)

1 2 3

1 1.000000e+00 1.288032e-16 3.187554e-17

2 1.288032e-16 1.000000e+00 -6.201636e-17

3 3.187554e-17 -6.201636e-17 1.000000e+00

How does the variance of β̂ differ in the models fit.2 and fit.4? What about the
variance of the fitted values Ŷ = Xβ̂? Finally, consider the output of the commands

> anova(fit.1,fit.2)

> anova(fit.3,fit.4)

Define the test statistic computed by this function and specify its distribution. Which
command yields a higher statistic?
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12K Statistical Modelling
For 31 days after the outbreak of the 2014 Ebola epidemic, the World Health

Organization recorded the number of new cases per day in 60 hospitals in West Africa.
Researchers are interested in modelling Yij, the number of new Ebola cases in hospital i
on day j > 2, as a function of several covariates:

• lab: a Boolean factor for whether the hospital has laboratory facilities,

• casesBefore: number of cases at the hospital on the previous day,

• urban: a Boolean factor indicating an urban area,

• country: a factor with three categories, Guinea, Liberia, and Sierra Leone,

• numDoctors: number of doctors at the hospital,

• tradBurials: a Boolean factor indicating whether traditional burials are common
in the region.

Consider the output of the following R code (with some lines omitted):

> fit.1 <- glm(newCases∼lab+casesBefore+urban+country+numDoctors+tradBurials,
+ data=ebola,family=poisson)

> summary(fit.1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.094731 0.050322 1.882 0.0598 .

labTRUE 0.011298 0.049498 0.228 0.8195

casesBefore 0.324744 0.007752 41.891 < 2e-16 ***

urbanTRUE -0.091554 0.088212 -1.038 0.2993

countryLiberia 0.088490 0.034119 2.594 0.0095 **

countrySierra Leone -0.197474 0.036969 -5.342 9.21e-08 ***

numDoctors -0.020819 0.004658 -4.470 7.83e-06 ***

tradBurialsTRUE 0.054296 0.031676 1.714 0.0865 .

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(a) Would you conclude based on the z-tests that an urban setting does not affect
the rate of infection?

(b) Explain how you would predict the total number of new cases that the researchers
will record in Sierra Leone on day 32.

We fit a new model which includes an interaction term, and compute a test statistic
using the code:

> fit.2 <- glm(newCases∼casesBefore+country+country:casesBefore+numDoctors,
+ data=ebola,family=poisson)

> fit.2$deviance - fit.1$deviance

[1] 3.016138

(c) What is the distribution of the statistic computed in the last line?

(d) Under what conditions is the deviance of each model approximately chi-squared?
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12K Statistical Modelling
(a) Let Y be an n-vector of responses from the linear model Y = Xβ + ε, with

β ∈ Rp. The internally studentized residual is defined by

si =
Yi − x⊺i β̂

σ̃
√
1− pi

,

where β̂ is the least squares estimate, pi is the leverage of sample i, and

σ̃2 =
‖Y −Xβ̂‖22
(n− p)

.

Prove that the joint distribution of s = (s1, . . . , sn)
⊺ is the same in the following two

models: (i) ε ∼ N(0, σI), and (ii) ε | σ ∼ N(0, σI), with 1/σ ∼ χ2
ν (in this model, ε1, . . . , εn

are identically tν-distributed). [Hint: A random vector Z is spherically symmetric if for

any orthogonal matrix H, HZ
d
= Z. If Z is spherically symmetric and a.s. nonzero, then

Z/‖Z‖2 is a uniform point on the sphere; in addition, any orthogonal projection of Z is
also spherically symmetric. A standard normal vector is spherically symmetric.]

(b) A social scientist regresses the income of 120 Cambridge graduates onto 20
answers from a questionnaire given to the participants in their first year. She notices one
questionnaire with very unusual answers, which she suspects was due to miscoding. The
sample has a leverage of 0.8. To check whether this sample is an outlier, she computes its
externally studentized residual,

ti =
Yi − x⊺i β̂

σ̃(i)
√
1− pi

= 4.57,

where σ̃(i) is estimated from a fit of all samples except the one in question, (xi, Yi). Is this
a high leverage point? Can she conclude this sample is an outlier at a significance level of
5%?

(c) After examining the following plot of residuals against the response, the
investigator calculates the externally studentized residual of the participant denoted by
the black dot, which is 2.33. Can she conclude this sample is an outlier with a significance
level of 5%?
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33C Statistical Physics

Consider an ideal quantum gas with one-particle states |i〉 of energy ǫi. Let p
(ni)
i

denote the probability that state |i〉 is occupied by ni particles. Here, ni can take the
values 0 or 1 for fermions and any non-negative integer for bosons. The entropy of the gas
is given by

S = −kB
∑

i

∑

ni

p
(ni)
i ln p

(ni)
i .

(a) Write down the constraints that must be satisfied by the probabilities if the
average energy 〈E〉 and average particle number 〈N〉 are kept at fixed values.

Show that if S is maximised then

p
(ni)
i =

1

Zi
e−(βǫi+γ)ni ,

where β and γ are Lagrange multipliers. What is Zi?

(b) Insert these probabilities p
(ni)
i into the expression for S, and combine the result

with the first law of thermodynamics to find the meaning of β and γ.

(c) Calculate the average occupation number 〈ni〉 =
∑

ni
nip

(ni)
i for a gas of fermions.
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33C Statistical Physics
(a) Consider an ideal gas consisting of N identical classical particles of mass m

moving freely in a volume V with Hamiltonian H = |p|2/2m. Show that the partition
function of the gas has the form

Zideal =
V N

λ3NN !
,

and find λ as a function of the temperature T .

[You may assume that
∫∞
−∞ e−ax2

dx =
√
π/a for a > 0.]

(b) A monatomic gas of interacting particles is a modification of an ideal gas where
any pair of particles with separation r interact through a potential energy U(r). The
partition function for this gas can be written as

Z = Zideal

[
1 +

2πN

V

∫ ∞

0
f(r) r2dr

]N
,

where f(r) = e−βU(r) − 1 , β = 1/(kBT ). The virial expansion of the equation of state
for small densities N/V is

p

kBT
=
N

V
+B2(T )

N2

V 2
+O

(
N3

V 3

)
.

Using the free energy, show that

B2(T ) = −2π

∫ ∞

0
f(r) r2dr .

(c) The Lennard–Jones potential is

U(r) = ǫ

(
r120
r12

− 2
r60
r6

)
,

where ǫ and r0 are positive constants. Find the separation σ where U(σ) = 0 and the
separation rmin where U(r) has its minimum. Sketch the graph of U(r). Calculate B2(T )
for this potential using the approximations

f(r) = e−βU(r) − 1 ≃
{
−1 for r < σ

−βU(r) for r > σ .
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33C Statistical Physics
(a) State the first law of thermodynamics. Derive the Maxwell relation

(
∂S

∂V

)

T

=

(
∂p

∂T

)

V

.

(b) Consider a thermodynamic system whose energy E at constant temperature T
is volume independent, i.e. (

∂E

∂V

)

T

= 0 .

Show that this implies that the pressure has the form p(T, V ) = Tf(V ) for some function
f .

(c) For a photon gas inside a cavity of volume V , the energy E and pressure p are
given in terms of the energy density U , which depends only on the temperature T , by

E(T, V ) = U(T )V , p(T, V ) =
1

3
U(T ) .

Show that this implies U(T ) = σT 4 where σ is a constant. Show that the entropy is

S =
4

3
σT 3V ,

and calculate the energy E(S, V ) and free energy F (T, V ) in terms of their respective
fundamental variables.
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34C Statistical Physics
(a) What is meant by the canonical ensemble? Consider a system in the canonical

ensemble that can be in states |n〉 , n = 0, 1, 2, . . . with energies En. Write down the
partition function for this system and the probability p(n) that the system is in state |n〉.
Derive an expression for the average energy 〈E〉 in terms of the partition function.

(b) Consider an anharmonic oscillator with energy levels

~ω

[(
n+

1

2

)
+ δ
(
n+

1

2

)2 ]
, n = 0, 1, 2, . . . ,

where ω is a positive constant and 0 < δ ≪ 1 is a small constant. Let the oscillator be in
contact with a reservoir at temperature T . Show that, to linear order in δ, the partition
function Z1 for the oscillator is given by

Z1 =
c1

sinh x
2

[
1 + δ c2 x

(
1 +

2

sinh2 x
2

)]
, x =

~ω

kBT
,

where c1 and c2 are constants to be determined. Also show that, to linear order in δ, the
average energy of a system of N uncoupled oscillators of this type is given by

〈E〉 = N~ω

2

{
c3 coth

x

2
+ δ

[
c4 +

c5

sinh2 x
2

(
1− x coth

x

2

)]}
,

where c3, c4, c5 are constants to be determined.
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26K Stochastic Financial Models
Consider the following two-period market model. There is a risk-free asset which

pays interest at rate r = 1/4. There is also a risky stock with prices (St)t∈{0,1,2} given by

14

10

1/2
==||||||||

1/2 !!B
BB

BB
BB

B

7

2/3
??~~~~~~~~

1/3
��@

@@
@@

@@
@ 12

8

1/4
==||||||||

3/4
!!B

BB
BB

BB
B

9

The above diagram should be read as

P(S1 = 10 | S0 = 7) = 2/3, P(S2 = 14 | S1 = 10) = 1/2

and so forth.

(a) Find the risk-neutral probabilities.

(b) Consider a European put option with strike K = 10 expiring at time T = 2.
What is the initial no-arbitrage price of the option? How many shares should be held in
each period to replicate the payout?

(c) Now consider an American put option with the same strike and expiration date.
Find the optimal exercise policy, assuming immediate exercise is not allowed. Would your
answer change if you were allowed to exercise the option at time 0?
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Paper 4, Section II

27K Stochastic Financial Models
Let U be concave and strictly increasing, and let A be a vector space of random

variables. For every random variable Z let

F (Z) = sup
X∈A

E[U(X + Z)]

and suppose there exists a random variable XZ ∈ A such that

F (Z) = E[U(XZ + Z)].

For a random variable Y , let π(Y ) be such that F (Y − π(Y )) = F (0).

(a) Show that for every constant a we have π(Y + a) = π(Y ) + a, and that if
P(Y1 6 Y2) = 1, then π(Y1) 6 π(Y2). Hence show that if P(a 6 Y 6 b) = 1 for constants
a 6 b, then a 6 π(Y ) 6 b.

(b) Show that Y 7→ π(Y ) is concave, and hence show t 7→ π(tY )/t is decreasing for
t > 0.

(c) Assuming U is continuously differentiable, show that π(tY )/t converges as t→ 0,
and that there exists a random variable X0 such that

lim
t→0

π(tY )

t
=

E[U ′(X0)Y ]

E[U ′(X0)]
.
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Paper 2, Section II

27K Stochastic Financial Models
In the context of the Black–Scholes model, let S0 be the initial price of the stock,

and let σ be its volatility. Assume that the risk-free interest rate is zero and the stock
pays no dividends. Let EC(S0,K, σ, T ) denote the initial price of a European call option
with strike K and maturity date T .

(a) Show that the Black–Scholes formula can be written in the form

EC(S0,K, σ, T ) = S0Φ(d1)−KΦ(d2),

where d1 and d2 depend on S0, K, σ and T , and Φ is the standard normal distribution
function.

(b) Let EP(S0,K, σ, T ) be the initial price of a put option with strikeK and maturity
T . Show that

EP(S0,K, σ, T ) = EC(S0,K, σ, T ) +K − S0 .

(c) Show that
EP(S0,K, σ, T ) = EC(K,S0, σ, T ) .

(d) Consider a European contingent claim with maturity T and payout

ST I{ST6K} −KI{ST>K} .

Assuming K > S0, show that its initial price can be written as EC(S0,K, σ̂, T ) for a
volatility parameter σ̂ which you should express in terms of S0,K, σ and T .

Paper 1, Section II

28K Stochastic Financial Models
(a) What is a Brownian motion?

(b) State the Brownian reflection principle. State the Cameron–Martin theorem for
Brownian motion with constant drift.

(c) Let (Wt)t>0 be a Brownian motion. Show that

P

(
max
06s6t

(Ws + as) 6 b

)
= Φ

(
b− at√

t

)
− e2abΦ

(−b− at√
t

)
,

where Φ is the standard normal distribution function.

(d) Find

P

(
max
u>t

(Wu + au) 6 b

)
.
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Paper 1, Section I

2H Topics in Analysis
By considering the function Rn+1 → R defined by

R(a0, . . . , an) = sup
t∈[−1,1]

∣∣∣
n∑

j=0

ajt
j
∣∣∣,

or otherwise, show that there exist Kn > 0 and δn > 0 such that

Kn

n∑

j=0

|aj | > sup
t∈[−1,1]

∣∣∣
n∑

j=0

ajt
j
∣∣∣ > δn

n∑

j=0

|aj |

for all aj ∈ R, 0 6 j 6 n.

Show, quoting carefully any theorems you use, that we must have δn → 0 as n→ ∞.

Paper 2, Section I

2H Topics in Analysis
Define what it means for a subset E of Rn to be convex. Which of the following

statements about a convex set E in Rn (with the usual norm) are always true, and which
are sometimes false? Give proofs or counterexamples as appropriate.

(i) The closure of E is convex.

(ii) The interior of E is convex.

(iii) If α : Rn → Rn is linear, then α(E) is convex.

(iv) If f : Rn → Rn is continuous, then f(E) is convex.

Paper 3, Section I

2H Topics in Analysis
In the game of ‘Chicken’, A and B drive fast cars directly at each other. If they

both swerve, they both lose 10 status points; if neither swerves, they both lose 100 status
points. If one swerves and the other does not, the swerver loses 20 status points and the
non-swerver gains 40 status points. Find all the pairs of probabilistic strategies such that,
if one driver maintains their strategy, it is not in the interest of the other to change theirs.
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Paper 4, Section I

2H Topics in Analysis
Let a0, a1, a2, . . . be integers such that there exists an M with M > |an| for all n.

Show that, if infinitely many of the an are non-zero, then
∞∑

n=0

an
n!

is an irrational number.

Paper 2, Section II

10H Topics in Analysis
Prove Bernstein’s theorem, which states that if f : [0, 1] → R is continuous and

fm(t) =
m∑

r=0

(
m

r

)
f(r/m)tr(1− t)m−r

then fm(t) → f(t) uniformly on [0, 1]. [Theorems from probability theory may be used
without proof provided they are clearly stated.]

Deduce Weierstrass’s theorem on polynomial approximation for any closed interval.

Proving any results on Chebyshev polynomials that you need, show that, if
g : [0, π] → R is continuous and ǫ > 0, then we can find an N > 0 and aj ∈ R, for
0 6 j 6 N , such that

∣∣∣ g(t)−
N∑

j=0

aj cos jt
∣∣∣ 6 ǫ

for all t ∈ [0, π]. Deduce that
∫ π
0 g(t) cos nt dt→ 0 as n→ ∞.
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Paper 4, Section II

11H Topics in Analysis
Explain briefly how a positive irrational number x gives rise to a continued fraction

a0 +
1

a1 +
1

a2 +
1

a3 + . . .

with the aj non-negative integers and aj > 1 for j > 1.

Show that, if we write

(
pn pn−1

qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an−1 1
1 0

)(
an 1
1 0

)
,

then
pn
qn

= a0 +
1

a1 +
1

a2 +
1

. . .

an−1 +
1

an

for n > 0.

Use the observation [which need not be proved] that x lies between pn/qn and
pn+1/qn+1 to show that

|pn/qn − x| 6 1/qnqn+1 .

Show that qn > Fn where Fn is the nth Fibonacci number (thus F0 = F1 = 1,
Fn+2 = Fn+1 + Fn), and conclude that

∣∣∣∣
pn
qn

− x

∣∣∣∣ 6
1

FnFn+1
.
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Paper 4, Section II

37D Waves
A duck swims at a constant velocity (−V, 0), where V > 0, on the surface of infinitely

deep water. Surface tension can be neglected, and the dispersion relation for the linear
surface water waves (relative to fluid at rest) is ω2 = g|k|. Show that the wavevector k of
a plane harmonic wave that is steady in the duck’s frame, i.e. of the form

Re
[
Aei(k1x

′+k2y)
]
,

where x′ = x+ V t and y are horizontal coordinates relative to the duck, satisfies

(k1, k2) =
g

V 2

√
p2 + 1 (1, p) ,

where k̂ = (cosφ, sin φ) and p = tan φ. [You may assume that |φ| < π/2.]

Assume that the wave pattern behind the duck can be regarded as a Fourier
superposition of such steady waves, i.e., the surface elevation η at (x′, y) = R(cos θ, sin θ)
has the form

η = Re

∫ ∞

−∞
A(p) eiλh(p;θ) dp for |θ| < 1

2π ,

where

λ =
gR

V 2
, h(p; θ) =

√
p2 + 1 (cos θ + p sin θ) .

Show that, in the limit λ→ ∞ at fixed θ with 0 < θ < cot−1 (2
√
2),

η ∼
√

2π

λ
Re

{
A(p+)√
hpp(p+; θ)

ei
(
λh(p+;θ)+

1
4π
)

+
A(p−)√

−hpp(p−; θ)
ei
(
λh(p−;θ)−

1
4π
)}

,

where
p± = −1

4 cot θ ± 1
4

√
cot2 θ − 8

and hpp denotes ∂2h/∂p2. Briefly interpret this result in terms of what is seen.

Without doing detailed calculations, briefly explain what is seen as λ→ ∞ at fixed
θ with cot−1 (2

√
2) < θ < π/2. Very briefly comment on the case θ = cot−1 (2

√
2).

[Hint: You may find the following results useful.

hp =
{
p cos θ + (2p2 + 1) sin θ

}
(p2 + 1)−1/2 ,

hpp = (cos θ + 4p sin θ) (p2 + 1)−1/2 −
{
p cos θ + (2p2 + 1) sin θ

}
p(p2 + 1)−3/2 .

]
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Paper 2, Section II

37D Waves
Starting from the equations for one-dimensional unsteady flow of a perfect gas at

constant entropy, show that the Riemann invariants

R± = u± 2(c − c0)

γ − 1

are constant on characteristics C± given by dx/dt = u ± c, where u(x, t) is the speed of
the gas, c(x, t) is the local speed of sound, c0 is a constant and γ > 1 is the exponent in
the adiabatic equation of state for p(ρ).

At time t = 0 the gas occupies x > 0 and is at rest at uniform density ρ0, pressure
p0 and sound speed c0. For t > 0, a piston initially at x = 0 has position x = X(t), where

X(t) = −U0 t
(
1− t

2t0

)

and U0 and t0 are positive constants. For the case 0 < U0 < 2c0/(γ− 1), sketch the piston
path x = X(t) and the C+ characteristics in x > X(t) in the (x, t)-plane, and find the
time and place at which a shock first forms in the gas.

Do likewise for the case U0 > 2c0/(γ − 1).
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Paper 1, Section II

37D Waves
Write down the linearised equations governing motion of an inviscid compressible

fluid at uniform entropy. Assuming that the velocity is irrotational, show that it may be
derived from a velocity potential φ(x, t) satisfying the wave equation

∂2φ

∂t2
= c20∇2φ ,

and identify the wave speed c0. Obtain from these linearised equations the energy-
conservation equation

∂E

∂t
+∇ · I = 0 ,

and give expressions for the acoustic-energy density E and the acoustic-energy flux I in
terms of φ.

Such a fluid occupies a semi-infinite waveguide x > 0 of square cross-section 0<y<a,
0<z<a bounded by rigid walls. An impenetrable membrane closing the end x = 0 makes
prescribed small displacements to

x = X(y, z, t) ≡ Re
[
e−iωtA(y, z)

]
,

where ω > 0 and |A| ≪ a, c0/ω. Show that the velocity potential is given by

φ = Re

[
e−iωt

∞∑

m=0

∞∑

n=0

cos
(mπy

a

)
cos
(nπz

a

)
fmn(x)

]
,

where the functions fmn(x), including their amplitudes, are to be determined, with the
sign of any square roots specified clearly.

If 0 < ω < πc0/a, what is the asymptotic behaviour of φ as x → +∞? Using this
behaviour and the energy-conservation equation averaged over both time and the cross-
section, or otherwise, determine the double-averaged energy flux along the waveguide,

〈
Ix
〉
(x) ≡ ω

2πa2

∫ 2π/ω

0

∫ a

0

∫ a

0
Ix(x, y, z, t) dy dz dt ,

explaining why this is independent of x.
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Paper 3, Section II

37D Waves
Small disturbances in a homogeneous elastic solid with density ρ and Lamé moduli

λ and µ are governed by the equation

ρ
∂2u

∂t2
= (λ+ 2µ)∇(∇ · u)− µ∇× (∇× u) ,

where u(x, t) is the displacement. Show that a harmonic plane-wave solution

u = Re
[
Aei(k·x−ωt)

]

must satisfy
ω2A = c2P k (k ·A)− c2S k× (k×A) ,

where the wavespeeds cP and cS are to be identified. Describe mathematically how such
plane-wave solutions can be classified into longitudinal P -waves and transverse SV - and
SH-waves (taking the y-direction as the vertical direction).

The half-space y < 0 is filled with the elastic solid described above, while the slab
0 < y < h is filled with a homogeneous elastic solid with Lamé moduli λ and µ, and
wavespeeds cP and cS . There is a rigid boundary at y = h. A harmonic plane SH-wave
propagates from y < 0 towards the interface y = 0, with displacement

Re
[
Aei(ℓx+my−ωt)

]
(0, 0, 1) . (∗)

How are ℓ, m and ω related? The total displacement in y < 0 is the sum of (∗) and that
of the reflected SH-wave,

Re
[
RAei(ℓx−my−ωt)

]
(0, 0, 1) .

Write down the form of the displacement in 0 < y < h, and determine the (complex)
reflection coefficient R. Verify that |R| = 1 regardless of the parameter values, and explain
this physically.
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